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The Shear Modulus of Liquid

Foam

D. Stamenovic

A strain energy function for liquid foam is formulated by modeling foam as a

T. A. Wilson

collection of randomly oriented surfaces with surface tension on the faces. The
surfaces are assumed to follow the mean strain. It is assumed that surface forces

equilibriate between neighboring elements and hence that the value of surface

Department of Aerospace Engineering
and Mechanics,

University of Minnesota,
Minneapolis, Minn. 55455

tension vy is the same on all faces and a function of total surface area. In particular,
an expansion of the strain energy function in powers of the strain is used to obtain
the value for the shear modulus in the linear elasticity approximation. The predicted

value of the shear modulus is 4/15 vS/V where S/ V is the surface to volume ratio or

2/5 AP, where AP is the overpressure of the gas trapped in the foam. In rheometric
tests, foam was found to behave as a viscoelastic material. The shear modulus that
describes the initial elastic response was found to be about 84 percent of the

predicted value.

Introduction

Foam appears to be capable of maintaining its shape if the
loading is small. We therefore developed a description of
foam as an elastic material, A strain energy function was
calculated from a model for the microstructure, and a shear
modulus, for small deformations, was obtained from the
strain energy. The predicted shear modulus was found to be
proportional to surface tension and the surface-to-volume
ratio in the undeformed state was found to be independent of
the surface tension-surface area properties of the surface-
active foaming agent. Surface tension and the surface-to-
volume ratio would be difficult to measure. However, the
overpressure of the gas trapped in a foam is also proportional
to the same parameters and is easily measured. Therefore, the
prediction of the model was tested by measuring the ratio of
the shear modulus to the overpressure.

The Strain Energy

The air cells of a foam are polyhedra with a variable
number of faces. The faces are nearly flat polygons with a
variable number of sides. Three faces meet along a line of
intersection and four of these lines meet at the corners of
adjacent cells. A surface-active agent that lowers surface
tension at the air-liquid interface provides the stability of the
thin fluid layers that form the cell walls. The mechanical
properties of the foam are a result of the surface tension
forces on the faces of the cells and the pressure in the gas in
the cells.

In the modeling, this microstructure is pictured as a net-

work of randomly oriented surfaces, and the strain energy of

Contributed by the Applied Mechanics Division for publication in the
JOURNAL OF APPLIED MECHANICS.

Discussion on this paper should be addressed to the Editorial Department,
ASME, United Engineering ‘Center, 345 East 47th Street, New York, N.Y.
10017, and will be accepted until two months after final publication of the
paper itself in the JOURNAL OF APPLIED MECHANICS. Manuscript received by
ASME Applied Mechanics Division, June, 1983; final revision, October, 1983.
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the equivalent continuum is obtained by summing the surface
energies of the surface elements in the network and the in-
ternal energy of the trapped gas. The increment of work done
on a surface with surface tension v during an incremental
increase in area ds is +y ds where vy may depend on surface
area. As the foam deforms, the surface elements are assumed
to follow the continuum strain field. Equation (1) describes
the ratio of deformed to initial area s/s, of a surface element
with a normal vector that initially lies in a direction described
by the polar and azimuthal angles, ¢ and y, with respect to the
principal axes of the deformation.

5750 = [(e; €08 P)? + (apcx38in ¢ cos ¥)?
+ (o3 8in ¢ sin )?]2 ‘ )

In this equation, «y, o, and oy are the stretch ratios in the
principal directions. The ratio of the total surface areas in the
deformed and initial states S/S; is obtained by integrating
equation (1) over all orientations.
27 T
AAY =(1/27r)50 So (5/5p) sin ¢ do dy ?2)

It is assumed that surfactant flows easily between the surfaces
of neighboring faces and as a result, surface tension is the
same on neighboring faces. It is assumed that the orientations
of the faces of each cell form a representative sample and
therefore, as the foam deforms and surface area changes,
surface tension changes but remains uniform throughout the
foam, and its value is determined by the average or overall
surface area, not the area of an individual face.

The energy per unit reference volume of foam W is the sum
of the surface energy and the internal energy of the trapped
gas.

A Vivy

w=/vo| " vassy-| " pavivg @)

1 1

In equation (3), p is the pressure of the trapped gas, S and V'
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t©1984b

r Cop¥r®hstl;vls%e http://www.asme.org/terms/Terms_Use.cfm



are the surface area, and volume of the foam and subscript
zero denotes the reference state. The constitutive equation is
obtained from the derivatives of W,

1 [ Sy 0(S/Sy)
[27X04] VO aal
The area ratio is given by equations (1) and (2), and the’
volume ratio is o; a; a3. The functions y(S5/S,) and p(V/ V)
for the deformation process must be known. The zeroth and
first-order terms in an expansion of equation (4) in powers of
(o —1) are given by equation (5)

T, =12y So/3Vo)—pol+ [ = Voldp/dV) o+~ (©2/5)ve +
+ (4/9)d’)’/d(S/So) | 0][80/ V0] ] [al + 27 + a3 — 3]
+(8/15)(v0So/ Vo)lay —1]

The following values for the derivatives of S/S, with respect
to o, evaluated at o; = 1, were used to obtain equation (5).

T,

@

_pa(V/VO)]

30(1

&)

F ELASTIC
. RESPONSE

ANGULAR DISPLACEMENT

[ ELASTIC
RESPONSE

—CONSTANT TORQUE——}—ZERO TORQUE—
TIME

Fig. 1 Angular twist of foam cylinder in response to a constant ap-
plied torque

3(S/Sp)/ dai;tg=2/3

215 i=j
32 (S/S)/da;dayj g = _ (6
4/15 i)

In the reference state, the stress must match ambient
pressure. Therefore,

APy =2vpSo/3Vo M

the overpressure of the trapped gas Ap, is called capillary
pressure {1]. Equation (7) has been obtained from an energy
balance [2], and from a calculation of the force per unit area
transmitted across a plane by surface tension on randomly
oriented surfaces intersecting the plane [3]. The Lamé
coefficients can be obtained from the coefficients of the linear
terms in (o; — 1) in equation (5).

They are

A==V,(dp/dV)o +[—2/5)70
+(4/9)dy/d (8/S0)1o1(Se/ V) ®)
=(4/15)(voS0/ Vo) ©)

The shear modulus u is independent of dvy/d(S/S,) because
surface area does not change to order (a—1) in shear. The
bulk modulus is N +:(2/3)u = = Voldp/dV)e + [=(2/9)v,
+ (4/9)dy/d (S/Sy) 4] (So/ Vy). This expression could also be
obtained by differentiating the prestress with respect to
volume. For typical values of the parameters v and S,/ V), the
bulk modulus is dominated by the bulk modulus of the
trapped gas.

Resistance to shear is provided entirely by surface tension,
and the prediction of a shear modulus for foam given by
equation (9) is a new result. A direct experimental test of
equation (9) would be difficult because of the difficulty of
measuring v and S,/ V,. However, capillary pressure is also
proportional to the product v, Sy/ V), and is easily measured.
Thus, the objective of the experimental work was to test the
prediction, u/Ap, = 0.4,

Experimental Testing

A foaming liquid was made of a mixture of pure dry
sodium oleate, distilled water, and glycerine, according to the
recipe of Courant [4]. Foam was formed by beating the liquid
with an electric mixer.

Capillary pressure was measured by the method of
Aleinikov [1]. A container was filled with foam and sealed,
and the increase in pressure in the container as the foam
decayed was measured. Seven samples were tested and Ap,
was found to be 155 + 21 N/m?.

The shear behavior of the foam was measured with a Deer
Rheometer. The space between the fixed and rotating plates of

€

S °°r

£

Q) 60 g oo ° 0 8

D o ° 8 0

5 5o 8 ® v

a aof o 0° ° 8 ¢

g o-LOADING

x 20F o~ UNLOADING

< .

% 1 1 1 1 ! i i 1 1 1 ]
w 0 2 4 6 8 10 12 14 16 18 20 22

APPLIED TORQUE (10%Nm)

Fig. 2 Shear modulus obtained from loading and unloading curves

plotted against applied torque
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the rheometer was filled with foam. The sample formed a
cylinder with a diameter of 5 cm and a height of 1 cm. A
torque M was applied to the upper plate, and its angular
deflection 6(¢) was. recorded. The torque was released, the
response measured, and a different constant torque applied.
A representative response curve is shown in Fig. 1. The short-
time response to the applied torque was limited by the
moment of inertia of the apparatus. After the initial sharp
increase in angular deflection and the ensuing damped
oscillation, the angular deflection continued to increase,
reaching a linear increase with time. The dashed lines shown
in Fig. 1 were drawn by extrapolating back through the
oscillations by eye, and these dashed lines were used to
describe the response of the foam to an applied torque.

For the range of torques that could be covered with the
rheometer, the foam samples behaved as a viscoelastic
material. Apparently, the geometry of the connection of the
cell faces changes under shear, allowing cells to migrate
relative to their neighbors at different heights. The initial
jump in angular deflection was chosen as the elastic response
to be compared with the predictions of the model. As shown
in Fig. 2, the shear modulus, calculated from the intitial
deflection, the applied torque, and the dimensions of the
sample is the same for both loading and unloading and is
independent of the magnitude of the applied torque. The
value obtained for the shear modulus from these experiments
is51.9 & 7.7 N/m?,

Discussion

The experimentally determined ratio of shear modulus to
capillary pressure is 0.33 or 84 percent of the predicted value
of 0.4. The value of the shear modulus predicted from the
model was expected to be high because of the assumption that
the individual surface elements of the foam follow the con-
tinuum strain field. The equilibrium configuration of the

Journal of Applied Mechanics

faces under a shear deformation of the foam, assuming no
slipping of the lines of intersection, may be different from the
assumed one. The equilibrium configuration is the minimum
energy configuration. If the assumed configuration is dif-
ferent from the equilibrium configuration, the strain energy
calculated from the assumed configuration must be greater
than the strain energy for the equilibrium configuration, and
hence, the value of the shear modulus deduced from the
model may be high.

This work was undertaken as a first step in developing a
model for lung parenchyma, which has a foam-like structure
with significant surface energy. The ratio of the shear
modulus of parenchyma to transpulmonary gas pressure has
been found to be a constant, independent of the initial state of
lung inflation [5]. However, the value of the ratio is 0.7,
about twice the value for liquid foam, and it will be necessary
to include the effects of tissue forces in modeling lung
parenchyma.,
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Thin-Shear-Layer Model in
Supercritical Hydraulic Flow

A supercritical, free-surface flow on an adverse incline has been modeled as a *‘thin-
shear-layer’’ with algebraic eddy-viscosity included to account for turbulent shear

stresses. The model has been solved numerically by a finite-difference technique for
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parabolic systems. Turbulent-viscous and adverse gravity effects are found to in-
teract via the free-surface behavior in a way that leads to breakdown of the steady
two-dimensional flow. Computed breakdown positions, velocity, and flow depth

developments are compared with experimental and semi-empirical hydraulic results.

1 Introduction

In a classical hydraulic situation, liquid flows on a
downward slope under the driving action of gravity. If the
velocity is supercritical, the flow development including the
location of the free surface, is completely independent of
conditions prevailing further downstream in the system. In
the less classical situation of supercritical flow along an
upward slope, a question of fundamental nature then arises:
As to what elevation will the supercritical flow proceed for
given kinetic energy at the entrance? Simple experiments [1, 2]
indicate that this height is of the order of 0.6 of the inlet
kinetic energy height at typical supercritical flow conditions.
Also, it would be of some interest to study the physical
phenomenon that eveéntually terminates the supercritical
upward motion and leads to a breakdown of the flow.

To this end we consider a physical system as sketched in
Fig. 1, where liquid is emanating under total head H, from a
horizontal slit at the bottom of a settling tank and enters a
wedge-shaped incline of height Lesina<H,, L being the
length and « being the angle of inclination of the incline. For
H, sufficiently large, the flow remains supercritical all along
the incline and therefore shoots over the wedge. By slowly
reducing H,, a critical state is reached at which a breakdown
of the flow — apparently in the form of an unsteady hydraulic
jump originating at the top of the incline —sets in. The jump
immediately rushes down the incline and completely quenches
the supercritical motion. This flow behavior was ex-
perimentally verified by Madsen [1] and by Andersson et al.
[2].

Since the free-surface flow up along the incline is
decelerated by gravity, the conditions for a two-dimensional
boundary layer separation are present. Actual numerical
predictions based on turbulent boundary layer considerations
[2] do indeed yield separation points that are sufficiently close

Contributed by the Applied Mechanics Division for publication in the
JOURNAL OF APPLIED MECHANICS.

Discussion on this paper should be addressed to the Editorial Department,
ASME, United Engineering Center, 345 East 47th Street, New York, N.Y.
10017, and will be accepted until two months after final publication of the
paper itself in the JOURNAL OF APPLIED MECHANICS. Manuscript received by
ASME Applied Mechanics Division, March, 1983; final revision, October,
1983,
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to the observed flow breakdown position that the possibility
of a separation-induced breakdown cannot be ruled out. In
the boundary layer approach, the free stream region was
assumed irrotational and laminar. Experimental results [1, 2],
however, indicated that at any cross section the free stream
zone would contain turbulence generated at sections further
upstream. According to these observations, a description of
the flow in terms of classical boundary layer theory cannot be
justified.

In the present paper, therefore, we resort to a theoretical
description of the flow along the adverse incline based on the
more general concept of a ‘‘thin-shear-layer’’ (TSL), see e.g.,
Cebeci and Bradshaw [3]. In this model the viscous and
turbulent shear effects are allowed to extend all the way from
the solid boundary out to the free surface. The model is based
on the boundary layer approximation to the Navier-Stokes
equations in primitive variables and with an algebraic two-
layer eddy-viscosity formulation for the turbulent shear-
stresses incorporated. This description contains several
distinct features which are of basic importance to the physical
problem considered. The turbulent-viscous and the adverse
gravity effects, which are characterized, respectively, by the
Reynolds number and the Froude number, are allowed to
interact through the free surface behavior. This viscous-
gravity coupling is of particular importance for the

water supply
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Fig.1 Sketch of the experimental flume and coordinate system
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assessment of the flow breakdown conditions. According to
the present model the breakdown occurs when the local
Froude number is close to 2, apparently after a dramatic
increase in the surface elevation has caused the flow to
separate at the bottom.

The actual numerical calculations are based on a finite-
difference method with the Box scheme [4, 5] and the Mechul
function approach [6] employed in an iterative scheme to
determine the elevation of the free surface, The method has
been tested on classical laminar film flow [7, 81, and direct
comparisons are made with the experiments of Madsen [1] for
hydraulic flow on an adverse incline.

2 Theoretical Model

We consider, as illustrated in Fig. 1, the fully turbulent flow
along an adverse incline. It is assumed that the free surface is
waveless, and that the flow is of the ‘‘thin-shear-layer”’ type.
The governing equations for two-dimensional steady flow
may thus be written as follows:

du ov
ax ay )
ou ou 1 ap sin
— P —= — — — - a
" ax ay p Ox &
1 6[ du ]
— — | —pu'v’ )
p Ay '%ay
1 9
0 = —«i—gcosa 3)
o 9y

Here, equation (1) is the continuity equation, and equations
(2) and (3) represent the simplified momentum equations in
the x and y-directions, respectively. ¥ and v are the mean
velocity components in the streamwise and cross-stream
directions, respectively, and pu’v’ is the Reynolds stress due
to turbulent fluctuations u’ og v’. p is the density, p is the
dynamic viscosity of the liquid, and g is the gravitational
acceleration.

At the channel bed the usual impermeability and no-slip
conditions are applied, i.e.

u(x,y)=v(x,y)=0 at y=0 4)

The normal and tangential stress conditions at the free surface
can be approximated by:

px.y)=pg at y=~h(x) (5)
iu_ =0 at y=h(x) 6)
dy

where p, is the ambient pressure. Further, the conservation of
the flow rate per unit channel width gives the additional
condition:

h(x)
SO u(x,y)ydy=0Q )

Since the system of governing equations (1)-(3) is of parabolic
type, an upstream velocity profile #(0,y) must be specified as
““initial condition.”

To solve the equations (1)-(3) subject to the boundary
conditions (4)-(7), it is convenient to relate the Reynolds
stress term to the mean velocity distribution by the relation

NE— ou
ou'v’' =pe % ‘)
Here, the eddy-viscosity e can furtermore be related to local
mean flow properties. In the present paper we are using a
modified version of the algebraic two-layer eddy-viscosity
model suggested by Cebeci and Smith [9] and Cebeci [10] for
turbulent boundary layers. According to this formulation the

Journal of Applied Mechanics

turbulent boundary layer is regarded as a composite layer
characterized by inner and outer regions:

i

€;

2
Ku,y[l -—exp(—y-u,/26u)] %

€ = Pu.h (10)

where v=u/p is the kinematic viscosity, ¥, =(7,,/p)"/? is the
friction velocity and 7,, = u(3u/dy), ., is the shear stress at the
bottom. « and (3 are empirical constants, set equal to 0.40 and
0.07, respectively, in accordance with e.g. [3]. The inner eddy-
viscosity expression (9) is matched with the outer region
expression (10) by the requirement of continuity in e.

Since the present analysis is restricted to free-surface flows
of the ‘“‘thin-shear-layer’’ type, the flow has a predominant
direction and the flow depth A(x) is small compared to a
typical length in the streamwise direction. With this
assumption, dimensionless variables are introduced, defined
by

= = n="VRe, (1)
hO hO

. u v . P-Dg

U= —, v=—+Re,, ="
o w e PR 4w

where u, is the initial mean velocity, A, is the initial flow
depth, and Rey=Q/». It is furthermore convenient to in-
troduce a dimensionless stream function f{£,7) such that
af af

an 23

Then, the momentum equations (2) and (3) and the boundary
conditions (4)-(7) transform into

ﬁ:

13)

(bff/)lzf'%‘/_’-g—f”—gj; +F0'2-tanoz+ 3—‘2 (14)
p'=—Fg2eRey? (15
fEO=1"(£,0)=0 (16)

fU (=0 an

J(£,8)=Rel* s

BEBS =0 (19)

where the primes denote differentiation with respect to . The
coefficient b=1+¢/v is obtained from the eddy-viscosity
model, equations (9) and (10). Fj is the initial Froude number
defined by

@0

and 6(£) denotes the value of the cross-stream coordinate 4 at
the free surface.

Fo=uy/(ghy cosa)'’?,

3 Numerical Formulation and Solution Procedure

It is obvious that the problem defined by equations
(14)-(19) is similar to a steady two-dimensional boundary
layer problem. The streamwise pressure gradient term 0p/9¢
in equation (14) cannot, however, be prescribed as in classical
boundary layer theory. The integration of the cross-stream
momentum equation (15) subject to the boundary condition
(19) reveals that dp/0¢ is related to the unknown flow depth
by the equation

p o, 4, dh
T Fy*Re; T F; ax
We therefore have a free surface in the problem whose
position must be obtained with the solution. In the “‘rigid lid”’

@
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approximation recently used by Rastogi and Rodi [11] and
Leschziner and Rodi [12], the free surface is replaced by a
fictitous plane boundary parallel to the channel bed, i.e.,
dé/dé = 0, and the pressure is treated as an unknown
variable. As a result of this constraint on the flow, a nonzero
pressure gradient 3p/d¢ is predicted at the surface, and this
pressure gradient accounts for, and can be interpreted as, the
slope of the surface [12]. Thus, the success of the “‘rigid lid”’
approximation indicates that the true surface position (%)
can be obtained locally by successive iterations until the free
surface condition (19) has been satisfied.

According to the Mechul function approach introduced by
Cebeci and Keller [6], we treat p(f,m) as an unknown
quantity, imposing numerically equation (15) at each £-station
(see also [5] and [13]). To solve the parabolic system of partial
differential equations (14)-(15) subject to the boundary
conditions (16)-(19), we use an implicit two-point finite-
difference method devised by Keller [4], by marching the
solution in the streamwise direction. This method, frequently
referred to as the Box scheme, is unconditionally stable and
permits arbitrary net spacings. Furthermore, it has second-
order accuracy in all variables, and Newton’s method—which
converges quadratically—is used to solve the nonlinear
difference equations.

First, we write the governing partial differential equations
in the form of a first-order system, introducing new depen-
dent variables g (£,7) and g (£,9):

Sf'=g 22)
g =q (23)
(bq)’=g—g§— —-q% +Fy%etana+ %% 24
p'=~F5?Rey™ (25)
with the boundary conditions
f(£,0)=¢(£,0)=0 (26)
q(£,0)=0 (27)
f(£,8) =Rey? 28)
p(£,6)=0 (29)
Next, finite differences are introduced on discrete net points
§80=0; g=flykn n=12,...N (30)
70=0;  m=y_,+d, j=12,...H (3

using the computational box shown in Fig. 2. Here n and j are
sequence numbers, and the values of f, g, ¢, and p at the net
point (§”, 7;) are written as f7, g7, q} and p}. The grid
spacing across the flow is varied according to the geometric
progression
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d;=d«(K)"' j=12,...H (32)

with K being the constant ratio between two successive steps,

K =d;/d;_, = 1.05. The mesh size next to the free surface is,
however, restricted by
dy=d,(K)""! (33)

to satisfy the condition 5 = &8(&"), i.e., the sequence
number H denotes a net point at the free surface. In the
streamwise direction a constant step length k" in the range 4,
— 104, is used, except close to the entrance where a finer
spacing is employed.

Following reference [3], equations (22), (23), and (25) are
discretized using centered-difference derivatves for the
midpoint (§", ;_,,,), whereas in equation (24) the derivatives
are centered about the midpoint (§7~12, n;_,,,). Thus, values
at the corners, only, of the box in Fig. 2 are involved. The
difference approximations to the governing equations are
then as follows:

1
U =fi-)/d;= 3 (g7 +gi-1) (34)
n n 1 n h
(g7 "'gj—l)/dj=z(Qj +qi_y) (35)
(bjg; —bj_\qj- )/ d; =& 1ntyU) =11
YW1 = @S 10 + 251 2] = RIZY, (36)
(B} —pj-1)/dj=—Fy? Reg ' (37
where
1
Y= (38)
;":11/2 = - (bj’-’;l q_;-l_l - bj']:]l q}':f )/dl +2F52 efana
- @)l + (@N 1ol —2p17 1)) (39)
and the notation
‘ 1
Sicin= 3 i +fi-1) (40)
is employed for quantities midway between net points. The
boundary conditions (26)~(29) yield at ¢ = £":
Ji=86=0 1)
qi =0 (42)
Sh=Rei? 43)
pir=0 44)

Since there is one more boundary condition given by
equations (41)~(44) than the number of first-order equations,
we use the additional condition (44) to determine the location
of the surface. After having made an initial guess {9 for the
surface coordinate at a streamwise location £”, and having
solved the nonlinear system (34)-(37) with boundary con-
ditions (41)-(43), successive iterations of the type

D =nf) —deRel?>F5p(£",mf)) i=0,1,2.. (45)
are performed, with p(£”, n{) as obtained with the solution

at the ith level of iteration. The sequence is terminated and the
numerical solution at the location £” is defined when

Ip(E", nf)) | <ep(£7,0) (46)

where ¢ is taken as 1073, The parameter & in equation (45) is
of the order unity, but is adjusted by linear interpolation for
every second iteration so as to improve the convergence of the
sequence.

The actual solution of the system of (4 H + 4) algebraic
equatins (34)-(37) and (41)-(43) is, at each §-station, arrived
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Fig. 3 Velocity variation along the incline. The points denote
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at using Newton’s method by considering iterates of the type
(1) G+D = (¢7) D + (8¢7) ) for the (4 H + 4) unknowns f
7, 8/ &7, P}, 0 = j = H. The resulting linearized system
exhibits a block tridiagonal structure, the blocks consisting of
4 X 4 matrices, and a very efficient block tridiagonal fac-
torization scheme due to Keller [14] is used to compute the
solution. )

Initial profiles for f, g, and g at £° = 0 are derived from a
two-parameter velocity distribution proposed by Pai [15]:

u(O,)’)=u(0,h0)|:1_a<l_ : >2 —d-a) (1,—%)2"’]

ko
CY)

Here we insert values m = 16 and @ = 0.05 to simulate an
only slightly developed entrance flow. The initial pressure
distribution across the flow is assumed to be linear:

p(0,y) =py + pg cosa(hy—y) (48)

and such that the free surface condition (5) is satisfied.

4 Results and Discussion

Solutions were computed on a UNIVAC 1160 computer for
a variety of turbulent supercritical flow conditions, and
convergent numerical solutions for a typical grid of 20 x 100
points were obtained within CPU-times of 30 sec. Grid
refinement tests indicated that this mesh-size was sufficient to
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Fig. 4 Flow depth variations along the incline. The points denote
measured depths for 6.0 < Fg < 7.0. The lines correspond to predic-
tions tor Fy = 6.13.
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Fig.5 Physical surtace slope (predicted) along the incline

obtain adequate grid independence. Figures 3-8 show
predicted results for a supercritical flow up along a 9.59 deg
incline, with initial flow depth A4, = 0.023 m, initial mean
velocity #, = 2.89 m/s, and kinematic viscosity » =
10-% m?/s, from which we obtain F; = 6.13 and Re, =
6.6+10%. The results are conveniently presented in terms of the
dimensionless streamwise coordinate
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which directly yields the ratio of the local potential energy
Xxesina to a typical value for the kinetic energy of the flow at
the foot of the incline.

Figure 3 shows the predicted variation of the surface
velocity u(x,4) and mean velocity u,,(x) = Q/h(x), both
nondimensionalized with respect to the initial surface velocity
u(0,h). The solid line represents results obtained with a
hydraulic (i.e., one-dimensional) model, as discussed in
reference [2]. In that particular formulation the wall friction
has been incorporated in the model by a selected value of the
friction factor

7-W

cr= 1—-——- =0.007 (50)
—2-pU2(x)
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where U(x) is the one-dimensional velocity.

The symbols displayed in Fig. 3 denote experimental data
for u(x,h). These results were obtained for flows with initial
Froude numbers in the range 6.0 < F; < 7.0, and the surface
velocity was measured with a pitot tube under stationary flow
conditions in a 0.6 m wide experimental flume, as shown in
Fig. 1. The results are nondimensionalized with respect to the
initial value of the surface velocity, which was obtained from
the measured water tank head by assuming the head loss
through the sluice gate to be negligible, i.e.,

u(0,h) = (2gH,)'" D

Further details concerning the measurements are contained in
references [1, 2].

It is observed that the data points in Fig. 3 fall close to the
one-dimensional velocity U(x) and the mean velocity u,, (x)
obtained by the hydraulic model and the TSL model,
respectively. This can probably be ascribed to the application
of equation (51), which yields somewhat too large values for
the scaling velocity u(0,4).

Experimental data and predicted values for the flow depth
h(x) along the incline are displayed in Fig. 4, where the
results have been scaled with the initial flow depth 4,. From
the results in this figure it appears that the TSL calculations
compare more favorably with the experiments at the lower X-
values, whereas the hydraulic model is more consistent with
the measurements at the higher ¥-values.

The governing equation in the hydraulic formulation has a
singularity at the local Froude number F(x) =
U(x)/(gh(x)cosx)'/? equal to 1,[2}. Thus, the surface slope
dh/dx tends to infinity as F(x) — 1. A similar behavior seems

Transactions of the ASME

Downloaded 02 May 2010 to 171.66.16.25. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



.7 T T T T T 1
~ o 8
Xer — ~a.
Q ,'/ =~
/
B
S5
’ o
Ar / . 1
/’ 6 0o 1?]‘230 experiments [1,2]
0 D0 Q .
‘ {e]
./ :::: 13'330 fhydraulic model [2]
(+]
" 1_91-230 TSL-model
A—h f
3 ! 1 ! 1 1 1
04 .08 12 16 -1 .20

F

o

Fig.9 Breakdown predictions compared with experimental data

to be exhibited also by the TSL model, although at a different
critical value of F. Figure 5 shows the increase in the physical
surface slope tan~! (dA/dx) along the incline, and it is ob-
served that the steeper slope is predicted by the hydraulic
model. In the TSL formulation, however, the increase in
dh/dx is accompanied by a reduction in the bottom shear
stress 7,, = u(0u/0y),-q, Fig. 6, so that the flow adjacent to
the channel bed is forced to separate from the bottom.
Downstream of this particular streamwise position (denoted
by x.), convergent numerical results could not be obtained.
In the TSL formulation this streamwise position therefore
defines the breakdown position of the model. The local
Froude number is seen to decrease monotonically at an almost
constant rate until the critical value F < 2 is approached.

The predicted breakdown typically occurs under slightly
supercritical local flow conditions (¥ < 2, Fig. 6), rather than
for critical flow as in the hydraulic model. From these ob-
servations it appears that the flow breakdown is caused by an
interaction between the free-surface behavior and the bottom
shear layer, resulting in a boundary-layer type of separation,
although the boundary layer concept itself is strictly not
compatible with the present TSL computational model.

It should be noted that the oscillatory nature of the
predicted wall friction 7,, in Fig. 6 probably is a result of the
actual initial profiles chosen, which obviously yield too low
wall shear at ¥ = 0. Therefore it is observed that the com-
puted quantity 7,,/1/2pu?, (x) first increases sharply up along
the incline, then reaches a maximum value and decreases
montonically toward zero at the breakdown position. The
friction factor ¢; = 7,,/1/2pU? (x) in the hydraulic model [2],
which was given the constant value 0.007, equation (50), is
seen to be roughly 5/2 times larger than a typical computed
value for the corresponding quantity in the TSL model. There
is, however, no compelling reason for these two quantities to
be equal, in particular since the hydrulic model is a quasi one-
dimensional form which is not strictly derived from the
partial differential equations for the flow problem like the
TSL model is.

Journal of Applied Mechanics

Some calculated velocity profiles presented in Fig. 7 give
further details on the flow field along the incline. Here, the
profile for n = 0 is the prescribed initial velocity profile
equation (47), and the profile for » = 33 represents the
predicted velocity distribution at X . These results show that
the flow enters the lower end of the incline as a basically
inviscid flow on top of a thin viscous boundary layer. Then,
moving downstream, the shear effects appear to be diffused
further out from the wall so that the flow becomes a fully
viscous-dominated layer, i.e., a thin shear layer.

In deriving the thin-shear-layer version (equations (2) and
(3)) from the Navier-Stokes equations, the streamwise dif-
fusion term » 8%u/dx? was neglected in the x-component, and
inertia and viscous terms were neglected altogether in the y-
component. To check the validity of these approximations,
the neglected terms were evaluated from the computed
solution. The ratio of the neglected: viscous terms to the
gravity term in the corresponding momentum equation was
found to be less than 104 throughout the flow field. The
cross-stream variation of the neglected inertia terms are
displayed in Fig. 8. The ratio of u dv/dx or v dv/3y to the
gravity term gecosa is typically of the order 103 (circles). At
the streamwise station next to x,,, however, the contribution
from the neglected inertia terms (triangles) is at their largest,
but does not—even close to the free surface—exceed 20
percent of the cross-stream gradient given by equation (3).
Accordingly, the thin-shear-layer model can be considered a
valid approximation to the full Navier-Stokes equations in
this type of flow, except, perhaps, in the immediate vicinity of
the breakdown position.

A critical flow behavior similar to the one predicted by the
theory, was observed also in the experimental flume. If the
water tank head H, was very slowly reduced (with the initial
shear layer depth A, kept constant), the surface level #(x)
would raise. As H, approached a certain value H, ., a more
pronounced increase in £ (x) on the upper part of the incline
occured, and for H, = H,. an unsteady hydraulic jump
would appear close to the top, rushing upstream and down the
plane, thus completely quenching the originally stable flow.
Under these conditions the critical position x,, may therefore
be approximated by the length L of the inclined channel bed.
Using equation (49) and the approximate relation (51) we
obtain

Fo =Lesina/H, (52)

In Fig. 9 experimental values of X ., defined this way, are
compared with predictions from the hydraulic model {2] and
with the present TSL calculations for two different angles of
inclination. It seems that the hydraulic model yields results
that are slightly more consistent with the experiments than
does the TSL model, although both models show the same
general trend: the existence of a maximum in X, =
X osinae/ (4?(0,h) (2g) for some value of the initial Froude
number in the range 5 s F,, s 8. The actual maximum value
for X, clearly depends on the angle «, which is to be expected
since the viscous effects accumulate along the length x, rather
than along the height xesino: A large o -implies that a high
elevation is reached in a short length x, and hence that the
viscous losses are reduced. Therefore, the larger o gives the
larger X;. The typical figures 0.55 < X, =< 0.65 indicate that
the transformation from kinetic to potential energy may
proceed at some 55-65 percent efficiency, at most, in this set-
up for the range of inclinations considered.

The boundary layer predictions of the breakdown points
(separation points) from reference [2] would fall upon curves
with negative slope in the X, F;! plane in the whole range of
F, values, and would, therefore, contradict the general trend
in the results in Fig. 9, at least for sufficiently large values of
the Froude number F;.
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It should be noted that for the TSL predictions, k" /£7, is in
the range of 0.04-0.10. Thus, the uncertainty in the X -results
due to the streamwise step-length is typically +0.04; i.e., the
relative large step-length " accounts for the erratic behavior
of the predicted X -values in Fig. 8.

The apparently good agreement between the hydraulic
model and the experimental values for ¥ is partly due to the
fact that the model was particularly calibrated for this
quantity; i.e., the friction factor ¢, was chosen so as to give
the best fit to the experimental values for X.. It may
therefore be concluded that the structure of the dissipation is
unimportant as far as the free surface is concerned and only
the magnitude of the dissipation has any material effect.
Thus, if one chooses the magnitude empirically to fit ob-
servations one must expect to get good agreement with ex-
periment. Nevertheless, to obtain detailed information of the
flow field (e.g., velocity profiles) and to avoid the op-
timization of any empiricial constant, a two-dimensional
formulation of the problem is necessary.

5 Conclusions

The supercritical free-surface flow on an adverse incline has
been treated by the ‘‘thin-shear-layer model’’ with algebraic
eddy viscosity included to account for turbulent shear
stresses. The resulting parabolic system of partial differential
equations was solved numericallly by a Keller Box scheme,
finite-difference technique.

The computed results are consistent with experimental
findings and with semi-empirical hydraulic results as far as
velocity, flow depth and breakdown positions are concerned.
For quantities like shear stress at the bottom and Froude
number at the flow breakdown positions the computed results
differ substantially from those in the hydraulic model. In
particular, the hydraulic model implies a critical Froude
number equal to unity whereas the computed results imply
values closely below 2.

The breakdown phenomenon may at least in the com-
putational results be attributed to a separation in the bottom
shear layer resulting from a severe steepening of. the free
surface. This phenomenon is not correctly described in terms
of classical boundary layer theory.

238/Vol. 51, JUNE 1984

The flow breakdown limits the energy recovery to a
maximum of 55-65 percent under the conditions considered.
These figures could possibly be improved by increasing the
slope of the incline.
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An existing analytical method for predicting the entrance region pressure drop and
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the application of arbitrary inlet velocity profiles. The only requirement for the use
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numerically) expressions for the inlet and the fully developed velocity profiles for
the cross-sectional geometry under consideration. The derived results are applied to
the case of the transition of fully developed laminar tube flow to fully developed
circular-sectorial flow. The latter may be induced by the introduction of a flow

divider into the tube. The numerical results are tabulated and also presented

graphically.

Introduction

The hydrodynamical development of laminar in-
compressible flow in the entrance region of a straight duct
leads to an overall change in the axial pressure drop over the
entrance length. Whenever flow in a duct of length com-
parable to that of the entrance length is studied, this total
pressure defect induced by the flow development, has to be
taken into consideration. Lundgren et al. [1] presented an
analysis in this respect on duct flows where the duct may be of
arbitrary cross section. In their derivation of pressure drop
results, the following assumptions were made according to the
laminar entrance region flow of an incompressible fluid in a
straight duct:

) the Navier-Stokes equation is satisfied by the flow
field;

(iiy  mass conservation is applicable through the con-

tinuity equation;

all physical properties of the fluid are constant;

(i)

(iv)  pressure variations in any cross-sectional plane are
neglected;

(v) the longitudinal shear component 8%u/dx? is
negligible relative to the transverse shear com-
ponents d%u/3y* + 0*u/dz2,

(vi)  the momentum equation may be linearized; and

(vi)) incremental pressure drop numbers derived,

respectively, through the concepts of momentum
and mechanical energy are identical despite the
introduction of the said linearization.

The analysis of Lundgren et al. [1] reveals the following
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result for the incremental pressure drop number for flow
development from a uniform inlet profile in a duct of cross-
sectional area A:

. 2
Re)= | 1tesin)’ ~arun)?taa

with the incremental pressure drop number K (x) defined by:
I-((x) =4X+Re(fapp _ﬁ (2)

and o referring to the fully developed region.

The expression (1) arrived at by Lundgren et al. [1] for the
incremental pressure drop number is a function of only the
geometry of the cross-sectional area of the duct and the fully
developed axial velocity u./u,,. The inlet velocity profile,
being uniform, is implicitly present as unity, namely

Ug/ Uy =1 3)

In this paper a generalization to equation (1) is discussed,
allowing explicitly for the inlet velocity profile. The analytical
procedure of Lundgren et al. [1] is closely followed, the only
alteration being the explicit incorporation of an arbitrary inlet
velocity profile. The end result may clearly not be cast in such
a simple form as equation (1), but the usefulness is greatly
extended. The newly derived expression should reduce to
equation (1) in the special case of a uniform inlet profile.

Analysis

The analysis presented at length by Lundgren et al. [1] may
be carried through with the inclusion of any particular inlet
velocity profile. Integration and the subsequent linearization
of the axial component of the Navier-Stokes equation leads to
the following expression for the incremental pressure drop
number:

f(m(oo) =

YT SSA [, —ud + et (U —ug)ldAd - (4)
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The velocity weighting factor e was introduced by Lundgren et
al. [1] and K, (o) is thus known from the inlet and the outlet
velocity profiles except for the constant e.

Following Lundgren et al., the equation for mechanical
energy may subsequently be integrated to provide the
following expression for the pressure drop number:

~ 1

=[], [y

2 2
Us, ~2U Uy + U
—(uo/Up)’ te——————
m

The assumption that the incremental pressure drop numbers
K, () and K,(), respectively, derived from the
momentumn and the mechanical energy equations, are iden-
tical, implies that the expressions given in equations (4) and

(5) are equal to one another in value. Hence follows
2(u3, —up)
SSA [(um/um )3 _(uO/urn)3 - _u—z'_

Jaa
€= a (6)

[ 1) = @oruy) 21da

]dA. 5)

The constant ¢ may thus be obtained directly by either
analytical or numerical integration for any set of inlet and
fully developed velocity profiles. The fully developed profile
is of course determined uniquely by the cross-sectional shape
of the duct. Also of importance is the fact that only the
prescribed inlet and fully developed profiles are needed to fix
the value of . The next step is to calculate, with the known
value of ¢, either K, (o) from equation (4) or K, () from
equation (5), each of which produces the same value for
K (). Thus follows

1‘<(oo)=2/ASSA [(um/um)2

o/t )+ %_—”ﬁ]am %)
and
K’(OO)=1/ASSA [(um/um)3
— 2
—(up/u,)? + ﬂf”"z—”")]dA ®)

m

In the special case of a uniform inlet profile substitution of
from (6) in (7) yields equation (1).

An indication of the hydrodynamic entrance length is
provided by the following result derived by McComas [3] for
the case of uniform inlet flow:

+ (umax/um)2 -1 _K(°°)

Liy 4fRe ©
It was, however, pointed out by Shah and London [4] that this
expression provides values of the entrance lengths that are too
low. Nevertheless, if the derivation of McComas is
generalized to cover the cases of nonuniform inlet profiles,
the following expression for arbitrary inlet velocity profiles is
arrived at:

(umax/um)2 - (l.io/um )2 "‘K( )
4fRe
A complication of this expression is the presence of the

velocity #,, denoting the value of the velocity at the inlet
along the streamline which leads to the maximum velocity in

+
L=

(10)

the fully developed region. Since the inlet position of this

streamline is generally unknown, the velocity #, cannot be
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calculated. Unless some means can be found to determine the
latter, equation (10) is of no practical value.

The momentum flux correction factor for laminar flow in a
straight duct is defined by

kd(x)zl/ASSA (u/u,,)*dA (11)
and the kinetic energy correction factor by
K, (x)=1/ASSA (u/uy,)3dA 12)

The values of these two correction factors also follow directly
from integration of the velocity profiles at the specific axial
position in question, It should be noted that only for the
special case of a uniform inlet velocity profile does the
following result hold:

K (o) =2[k, () kg ()] (13)

The analytical results presented in this section will now be
applied to the case of developing flow in a straight duct of
circular-sectorial cross section where the inlet profile may be
uniform or parabolic,

Flow in a Duct of Circular-Sectorial Cross Section

In the case of fully developed flow in a duct of circular-
sectorial cross section the Navier-Stokes equation leads to the
following expression for the axial velocity component (Eckert
and Irvine [5]):

ca?

um=—T£¢(r,0) for 0<2¢=<2w (14)
with
1 dp
€= wodx
and
cos 24
o= (22 )
£, (r0)=(r/a) 03 26
: Cosnﬂ-e
1624)2 & - = o 2¢
+ (j’) Y- 2 ) @ ¢
T n=13,.. 4¢ 4¢
n(n+22) (n- )
T 7r
(15)
The mean axial velocity u,, is given by:
ca®
um=_T\[/¢ (r,0) (16)

with ¥, (r,0) in the following form after Shah and London [4]:

an2¢
Yy (r.0)= i —1/2
© 1
—64/T22¢/7)° Y, an

o) %)

The fully developed velocity profile may henceforth be ob-
tained from equations (14)-(16), namely by

uoo/ungtﬁ/llbd) (18)

The momentum and the energy correction factors follow
from the application of this result to equations (11) and (12),
respectively. Numerical values in this respect, obtained by the
present authors by means of numerical integration, are
presented in Table 1. A uniform grid system of 100 x 100
nodes was used in the computations to provide an accuracy of
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Table 1 Numerical results for various quantities relating to entrance region effects in cases

of circular-sectorial flow

2¢ K (o) € KP () & kg (o) k, (o0) L,
5 2.645 1.370 3.616 1.918 1.558 2.880 0.0704
10 2.411 1.296 3.059 1.811 1.525 2.731 0.0586
15 2.238 1.243 2.644 1.733 1.499 2.618 0.0519
20 2.105 1.203 2.325 1.674 1.478 2.530 0.0475
25 2.001 1.174 2.073 1.630 1.460 2.461 0.0444
30 1.918 1.150 1.871 1.596 1.446 2.405 0.0420
35 1.850 1.132 1.706 1.570 1.434 2.359 0.0401
40 1.795 1.117 1.568 1.549 1.424 2.322 0.0386
45 1.749 1.105 1.452 1.534 1.415 2.290 0.0374
50 1.711 1.096 1.353 1.521 1.408 2.264 0.0364
55 1.678 1.087 1.267 1.512 1.402 2.241 0.0355
60 1.651 1.080 1.193 1.504 1.397 2.222 0.0347
65 1.627 1.075 1.127 1.498 1.392 2.206 0.0340
70 1.607 1.069 1.069 1.493 1.388 2.191 0.0335
75 1.589 1.065 1.018 1.488 1.385 2.179 0.0329
80 1.574 1.061 0.971 1.485 1.382 2.168 0.0325
85 1.560 1.058 0.930 1.482 1.379 2.159 0.0321
90 1.548 1.055 0.892 1.480 1.377 2.151 0.0317
95 1.538 1.052 0.857 1.476 1.375 2.144 0.0313
100 1.529 1.050 0.825 1.473 1.373 2.137 0.0310
105 1.521 1.048 0.796 1.470 1.371 2.132 0.0307
110 1.513 1.046 0.770 1.468 1.370 2.127 0.0305
115 1.507 1.044 0.745 1.465 1.369 2.122 0.0302
120 1.501 1.043 0.722 1.463 1.367 2.118 0.0300
125 1.496 1.041 0.700 1.460 1.366 2.114 0.0298
130 1.491 1.040 0.681 1.458 1.365 2.111 0.0296
135 1.487 1.039 0.662 1.455 1.365 2.108 0.0295
140 1.483 1.038 0.645 1.453 1.364 2.106 0.0293
145 1.480 1.037 0.628 1.450 1.363 2.103 0.0291
150 1.477 1.036 0.613 1.448 1.363 2.101 0.0290
155 1.474 1.035 0.598 1.445 1.362 2.099 0.0289
160 1.471 1.035 0.585 1.443 1.362 2.097 0.0288
165 1.469 1.034 0.572 1.441 1.361 2.096 0.0286
170 1.467 1.033 0.560 1.439 1.361 2.094 0.0285
175 1.465 1.033 0.549 1.437 1.360 2.093 0.0284
180 1.463 1.032 0.538 1.435 1.360 2.092 0.0283
210 1.455 1.030 0.483 1.426 1.358 2.086 0.0278
240 1.449 1.028 0.442 1.420 1.357 2.082 0.0275
270 1.446 1.027 0.410 1.418 1.356 2.079 0.0272
300 1.442 1.026 0.383 1.417 1.356 2.077 0.0270
330 1.440 1.026 0.361 1.419 1.355 2.075 0.0268
360 1.437 1.025 0.343 1.422 1.355 2.073 0.0267

F0.01 percent. The hydrodynamical entrance length ex-
pression (9) by McComas [3] is a function of the maximum
velocity value. Since flow in a wedge-shaped duct is sym-
metrical about the §=0 plane, the position (7,6) of maximum
velocity was computed by application of the well-known
secant method to a search along the §=0 coordinate line, for
the position where

9 _

= L rmy=0 (19)
ar a
with
r cos 20
X(r’0)22(7)( cos 2¢ _1>
nné
1620 & N 2o g
sl Y en (L) —2— o

™ n=1,3,.. n2_ (4¢)2

Table 2 consists of a listing of some computed values for
results in accordance with the present section. Values of L},
according to equation (9) are presented in Table 1.

The series solutions presented in equations (15), (17), and
(20) are not defined for apex angles n/2 and 3#/2 so that
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special attention is needed to provide numerical values at
these removable singularities. The dimensionless quantity fRe
may be evaluated for fully developed flow in circular-sectorial
ducts from (Shah and London [4]):

JRe= % (%&)2

Discussion Regarding Sectorial Flow

@n

In the particular case of a semicircular cross section a series
solution is available according to the paper of Weigand [6].
The present results were tested against such a solution {2] and,
although the numerical results were identical, the convergence
rate of the infinite series was found to be much slower in the
latter case. The nonsquared velocity terms present in
equations (7) and (8) also necessitate the introduction of a
large number of grid nodes, as was mentioned earlier. On the
contrary, equation (1) contains only higher powers of the
velocity values and these are accurately computed by far fewer
nodes than in the first case.

The. present results for K(o) are similar to those of
Sparrow and Haji-Sheikh (published by Shah and London [4])
for 2¢ = 180 deg, but a discrepancy of up to 5.6 percent is
present in the case of smaller values of the apex angle.

_ In Fig. 2 the numerical results of the present study for fRe,
K (o), K? (), and L}, are represented graphically. K? (o)
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Table 2 Numerical values of fRe and the radial position and magnitude of the maximum
velocity for fully developed circular-sectorial flow

2¢ fRe 7 Unax/ Um 2¢ fRe 7 Umnax/ Upm
5 12.262 0.918 2.664 185 15.802 0.476 2.060
10 12,504 0.870 2.518 190 15.836 0.471 2.060
15 12,728 0.834 2.425 195 15.868 0.467 2.059
20 12.936 0.803 2.356 200 15.899 0.463 2.058
25 13.130 0.778 2.309 205 15.929 0.459 2.058
30 13.310 0.755 2.270 210 15.957 0.455 2.057
35 13.478 0.735 - 2.239 215 15.985 0.451 2.056
40 13.635 0.717 2.214 220 16.011 0.447 2.056
45 13.782 0.700 2.193 225 16.037 0.444 2.055
50 13.920 0.685 2.176 230 16.061 0.440 2.055
55 14.049 0.671 2.162 235 16.085 0.437 2.054
60 14.171 0.658 2.149 240 16.108 0.433 2.054
65 14.286 0.646 2.138 245 16.130 0.430 2.054
70 14.394 0.634 2.129 250 16.151 0.427 2.053
75 14.495 0.623 2.121 255 16.171 0.423 2.053
80 14.592 0.613 2.114 260 16.191 0.420 2.053
85 14,683 0.604 2.108 265 16.210 0.417 2.052
90 14,766 0.595 2.102 270 16.228 0.414 2.052
95 14.850 0.586 2.098 275 16.246 0.411 2.052
100 14,928 0.577 2.093 280 16.263 0.408 2.052
105 15.001 0.569 2.089 285 16.279 0.406 2.051
110 15.071 0.562 2.086 290 16.295 0.403 2.051
115 15.137 0.554 2.083 295 16.310 0.400 2.051
120 15.200 0.547 2.080 300 16.325 0.398 2.050
125 15.260 0.541 2.078 305 16.340 0.395 2.050
130 15.318 0.534 2.075 310 16.353 0.393 2.050
135 15.372 0.528 2.073 315 16.367 0.390 2.050
140 15.424 0.522 2.072 320 16.380 0.388 2.050
145 15.474 0.516 2.070 325 16.392 0.385 2.049
150 15.522 0.510 2.068 330 16.405 0.383 2.049
155 15.527 0.505 2.067 335 16.416 0.380 2.049
160 15.611 0.500 2.066 340 16.428 0.378 2.049
165 15.652 0.495 2.064 345 16.439 0.376 2.049
170 15.692 0.490 2.063 350 16.449 0.374 2.048
175 15.730 0.485 2.062 355 16.460 0.372 2.048
180 15.767 0.480 2.061 360 16.470 0.370 2.048
6 e |...,,,...‘,.....“...‘_18
5[ P
i fRe ]
L. +
_ I 100Lhy 1
Ki=y b -1
. |
100Lhy - ; fRe
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2r R (=) M
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Fig.1 Notation for the problem under consideration | )
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denotes the pressure drop number in the special case of a
parabolic inlet profile and is calculated from equation (7) or
(8). Most interesting is the apex angle (2¢) . = 27.9deg = 4
radian for which the incremental pressure drop numbers for
the uniform and the parabolic inlet profiles are of the same
magnitude, namely 1.95. In the case of ¢-values less than ¢,
K(o) < KP(o) and vice versa. Numerical values for the
pressure.drop numbers for flow development from uniform
and parabolic inlet profiles are included in Table 1. According
to these results the values of the differences in the squared
velocity terms are, in all uniform inlet cases, more than twice
the values of the corresponding pressure drop numbers. The

2421Vol. 51, JUNE 1984

2¢ { degrees }

Fig. 2 Circular sector ducts: fRe, K(), KP(x) and L,;*y as from the
values of Tables 1 and 2

hydrodynamical entrance length thus decreases with increase
in ¢ in a way similar to the decrease in the overall value of the
velocity terms.

Conclusion

The results obtained in this paper form a useful
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generalization to the work of Ludgren et al. [1]. It allows the
introduction of arbitrary inlet velocity profiles in the study of
hydrodynamical entrance-length pressure drops. The special
case of sectorial flow, for which numerical results are
presented with the flow development taking place from a
nonuniform inlet profile, serves as an example of the field of
application of the analysis. Also pointed out is the still
unresolved problem of calculating the valué of the velocity .
Once this is accomplished for any specific geometry the
corresponding hydrodynamical entrance length may be
calculated from equation (10).
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Bifurcation Theory Applied to Oil
Whirl in Plain Cylindrical Journal

C. J. Myers

Department of Applied Mathematical Studies,
University of Leeds,
Leeds LS2 9JT7, England

Bearings

An analysis of the self-excited oscillations of a rotor supported in fluid film journal
bearings is presented. It is shown that Hopf bifurcation theory may be used to

investigate small-amplitude periodic solutions of the nonlinear equations of motion
Sfor rotor speeds close to the speed at which the steady-state equilibrium position
becomes unstable. A numerical investigation supports the findings of the analytic

work.

Introduction

Under certain operating conditions the hydrodynamic
forces generated in fluid film journal bearings are capable of
sustaining a self-excited oscillation in which energy is trans-
ferred from rotation of the rotor into a whirling motion. This
flutter-type instability is normally referred to as oil whirl. If
the amplitude of oscillation becomes too large it may
significantly affect machine performance, or endanger its safe
operation. There is therefore a need to understand the nature
of oil whirl and to identify the important parameters.

Conventional analysis of the problem by linearizing the
hydrodynamic forces about the equilibrium position [1-3]
indicates that the journal becomes unstable above a particular
rotor speed (the threshold speed). Apart from the pioneer
work of Lund and Saibel [4], who developed the method of
averaging, investigation of nonlinear effects has been con-
fined mainly to numerical integration [5-7]. Such in-
vestigations are not entirely satisfactory, either because the
authors fail to account for rupture of the oil film in the
bearing, or because a complete parametric study was not
undertaken.

This paper uses Hopf bifurcation theory to investigate the
existence of small-amplitude periodic solutions of equations
which describe the motion of a rotor supported in fluid film
bearings. It is shown that the existence of stable limit cycles
for rotor speeds in excess of the threshold speed is confined to
a specific region of parameter space and outside this region
unstable limit cycles exist below the threshold speed.
Numerical integration supports the analytic results and shows
how the limit cycle develops as the rotor speed is increased.
The combined approach establishes the onset of oil whirl as a
bifurcation phenomenon and identifies several features not
previously observed.

Contributed by the Applied Mechanics Division for publication in the
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Hopf Bifurcation Theory

Hopf bifurcation theory is concerned with the bifurcation
of periodic orbits from equilibrium points of a system of
O.D.E. as a parameter crosses a critical value. Consider the
differential equation:

dax
— =F(x, 1
a (x,») 10))
which is a real n-dimensional, autonomous, first-order system
of O.D.E. (n = 2) and »is a real parameter. Assume that:

() x = a’is an equilibrium point of equation (1);

(i) the Jacobean matrix F,(a®, 0) has exactly two
nonzero, purely imaginary eigenvalues + i,(Q, > 0)
and (n — 2) eigenvalues with nonzero real parts;

F is differentiable in a neighborhood of (x, ») = (a?,
0);

(i)

(iv) (da/dv) # 0, where a(v) + iQ(r) denotes that
eigenvalue of F,(a”, ») that is a continuous extension
of + if.

Under these conditions Hopf [8] proved that a nonconstant
periodic orbit bifurcates from (x, ») = (a% 0). Hopf also
supplied a uniqueness theorem and information regarding
stability. A major difficulty with the theory lies in its ap-
plication to concrete examples, particularly in determining the
direction of bifurcation (i.e., for » < 0, or v > 0) and the
stability of the periodic orbit. Several authors have sub-
sequently sought to simplify Hopf’s original approach in this
respect [9-12]. These methods require a transformation of the
equations by introducing new variables, which for equations
with n = 3 and several nonlinear terms become very com-
plicated. Poore (13) has removed many of these difficulties by
deriving algebraic criteria that are sufficient to determine the
direction of bifurcation and the stability of the periodic orbit.

To simplify Poore’s work assume that the derivative
(da/dv),.¢ > 0 and the remaining (n — 2) eigenvalues of
F,(a%, 0) have negative real parts. Excluding the special case
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in which bifurcation occurs only for » = 0, one of two
possibilities may occur:

() a stable periodic orbit bifurcates from (x, ») = (a°, 0)
for » > O (supercritical bifurcation), or

(i) an unstable orbit bifurcates from (x, ») = (a°, 0) for »
< 0 (subcritical bifurcation).

Note that only one-sided bifurcation can occur.

The direction of bifurcation is determined through the sign
of a certain quantity; 6'(0), using Poore’s notation. If 6(0) >
0 supercritical bifurcation takes place, whereas if 6'(0) < 0
subcritical bifurcation occurs. Poore (13) has established
algebraic formulas that enable the sign of §'(0) to be deter-
mined. The formulas derived by Poore do not require F(x, »)
to be in any special form nor is it necessary to transform the
equations to new variables, which, in applications to concrete
examples is a considerable advantage.

Application of Bifurcation Theory to Oil Whirl
The purpose of this section is to:

(/) Establish the existence of a Hopf bifurcation to
equations that govern oil whirl in a simple rotor
system, and hence prove the existence of small-
amplitude periodic solutions to these equations.

(il Determine the direction of bifurcation and the
stability of the orbit by using Poore’s formulas.

The model is of a rigid, symmetric rotor mounted in two
identical, plain cylindrical journal bearings. The investigation
is confined to cylindrical whirling in which the two ends of the
rotor remain in phase so that it is sufficient to consider only
one bearing, which then supports a load equal to half the
weight of the rotor. Let the rotor mass be 2M and the journal
center have displacements X and Y (Fig. 1) then the equations
of motion of the journal are:

Md*x .. Md ..
- =AY o) dtzy =F,(X,Y,X,Y,0),
o=LR*wu/Fc* ¥)

The force components F,, F, consist of the hydrodynamic
forces generated in the bearing, together with the applied load
F (Fig. 1) and in general they are nonlinear in the four
arguments X, Y, X, Y. The Sommerfeld number o is defined
in the foregoing, where L is the bearing length in the axial
direction, R the bearing radius, w the angular rotor speed, ¢
the radial clearance, and p the lubricant viscosity.

Equations (2) may be nondimensionalized by writing:

x=X/c y=Y/c y=wt @=(Mc/F)"w f,
=F,/oF f,=F,/oF 3
which yields

" g I " g r s
X= fo(«\’,y,x’y,a) y= Efy(x’yyx)yao') (4)
The hydrodynamic forces are calculated by integrating the
hydrodynamic oil film pressure, p, generated in the bearing,
which is obtained by solving the lubrication equation—the
Reynolds equation {14]. In this investigation an analytic
solution is obtained by using the ‘long bearing ap-
proximation’’ (see Appendix). In solving the Reynolds
equation it is common to use polar coordinates which are the
eccentricity ratio e (defined as the eccentricity of the journal
center A normalized with respect to the radial clearance ¢),
and the attitude angle ¢ (the angle between the load direction
and the load connecting the centers of the bearing and the
journal). The hydrodynamic forces are calculated as a radial
force, F, and a tangential force, F,. Referring to Fig. 1:
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Fig.1 Diagram of a journal bearing

Jx=1/o+f,cosp—fsing f,=fsing
+ficos¢p if.=F./oF f,=F,/oF )

In this investigation the forces F,,F, include the effect of film
rupture by assuming that the film extends only over the
converging film section of the bearing (see Appendix).

With the origin of the X — Y coordinate system located at
the bearing center O the relationship between the polar and
Cartesian coordinate is:

X=ecos¢p  y=esing 6)
This transformation, together with equation (5), defines f,
and f, as functions of x,y,x,y. It also follows that since f,.f,
are differentiable functions of ee,¢,4 then f,.f, are dif-
ferentiable functions of x,y,x,y.

To apply the Hopf bifurcation theorem, it is necessary to
convert equations (4) . to a first-order system of O.D.E.
Writing:

X=X Xp=X X3=)Y X4=) )
equations (4) become:

s
X1 =X

’ g
Xy = fo(xl ,xz,x3,x4,o)

’

X3 =Xy
I [
Xy = ‘_D'z’fy (Xz,Xz,X3 ,X4,0’)
or
d
~x =F(x,3,0) ®)
dy

The system of equations (8) is now in a suitable form for the
application of the Hopf bifurcation theorem, with @, the
normalized rotor speed taking on the role of the parameter »
in the general theory.

Equilibrium Solutions. Denoting steady-state conditions
by the subscript s, it can be shown that:

F(x,0,0)=0=0(¢) = (.f%s +ﬁs) e
. @+du-&)
T be {mi(1—€2) +4e2}”

®
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and

Jis
( _frs)
Equation (9) establishes the relationship between the Som-
merfeld number and the steady-state value of the eccentricity
ratio; equation (10) describes the locus of the journal center
under steady-state conditions (Fig. 2).

(10)

tang, = =m(l —€2) " /2¢

Stability of the Equilibrium Position may be examined by
calculating the Jacobean matrix of F with respect to x:

As the threshold speed is exceeded, a single pair of eigenvalues
cross into the right half plane and the journal becomes un-
stable. The stability borderline (@,/¢,) is shown in Fig. 3 (the
other curves are explained later). For ¢, > 0.8 the journal is
always stable (@, = o0), while for ¢, < 0.8 there is a bifur-
cation point in parameter space at (e;,®;). The non-
dimensional whirl frequency ((, = Q,/w) is easily calculated
from equation (13) and is given in Table 1. Since §, # 0 for ¢,
< 0.8 the eigenvalues that cross the imaginary axes at (¢;, @)
do not pass through the origin.

0 1 0
A(@) = (V F(%,8)) ey, =
0 0 0

0

— K, /3 =By / & — K,/ @* — B,/ @*

3]
1

_ny/d’z _Byx/d’z — Kyt & "Byy/‘;’z

where
K, =—0(0f:/0x3)5 , By, = —0(8f,/0x4); (12)

The eight force derivatives, denoted in the foregoing, are
referred to as velocity and displacement coefficients and, in
nondimensional form, are functions of ¢, (see Appendix).

The eigenvalues of the matrix A (@) satisfy the charac-
teristic equation:

etc.

1 1
A+ = (B +B,, )N + = [(KatKy)
1 2
+ —5 (BuByy =By By:) I\
1
+ =5 (BuKyy + By K = By Ky = By Kooy I\
(13)

The roots of this equation are examined by using Routh’s
criterion (15) which leads to the condition:

1
+ & (KK, — KK, }=0

@< @, forstability (14)

@, the normalized threshold speed, is a function of ¢ only.

_The derivative (da/d&) ;- g, is also required (d(w) +
iQ(w) denotes the eigenvalue of 4 that is a continuous ex-
tension of +i{)). In this calculation it is necessary to consider
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Fig.2 Theoretical steady-state locus of the journal center

3.5
! I
'} _ophrating carve ! |
: fof S$g02 J
3.0 1 1 |
' T
t
‘ i\ I
1
2.5 L |
lsbo [ ] N\ :
T
£ | \ }
2.0 1 stabliity i\ 50018
'g ] ordrli 1 [}
o 1 unsfable | f
& T N [
3 s s AN |
e . N 1
b4 1
\ ! AN i
3 \ ' | |
a t
E 10 L nesengl N }
o L
2 ! \\ !
T 1
I
05 \\\L stablle M~~~ Jr \
1 l\ 1] lm.l\l; \
T ]
' | ™~ :
! 1
0o [¢A] 02 ‘o3 04 05 0.6 o7 08 08 10

steady state eccentricity ratio (a/c)
£-2

Fig.3 Stability chart

246/Vol. 51, JUNE 1984

Transactions of the ASME

Downloaded 02 May 2010 to 171.66.16.25. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



Table1 Results of bifurcation theory

€s o (Z)O SQ = U/CO() (d&/d(;))o QO 8’(0)
0.01 10.61 0.94 11.26 0.04 1.15 <0
0.05 2.12 0.95 2.24 0.19 1.15 <0
0.10 1.06 0.95 1.11 0.35 1.14 <0
0.14 0.76 0.96 0.79 0.45 1.13 <0
0.15 0.70 0.96 0.73 0.47 1.13 >0
0.20 0.53 .0.98 0.54 0.54 1.1t >0
0.30 0.35 1.03 0.34 0.55 1.07 >0
0.40 0.25 1.10 0.23 0.46 1.02 >0
0.50 0.19 1.21 0.16 0.35 0.96 >0
0.60 0.15 1.37 0.11 0.23 0.88 >0
0.70 0.11 1.73 0.07 0.10 0.72 >0
0.74 0.10 2.13 0.05 0.05 0.60 >0
0.75 0.10 2.31 0.04 0.04 0.55 <0
0.76 0.09 2.57 0.04 0.03 0.50 <0
0.77 0.09 2.98 0.03 0.02 0.43 <0
0.78 0.09 3.77 0.02 0.01 0.35 <0
0.79 0.08 6.43 0.01 0.0 0.20 <0

the relationship between the parameters w, o, and . A
change in the rotor speed w alters the Sommerfeld number and
hence the corresponding equilibrium position. A system
parameter S is therefore introduced, independent of the rotor
speed, and constant for any rotor system (assuming constant
lubricant viscosity):

Define 6=8S&=S=LR%u/ (FMc) " c* (15)

A series of operating curves for different values of S is
shown in Fig. 3 where each curve illustrates the relationship
between the rotor speed and the corresponding equilibrium
position. The derivative (da/d®) .., is calculated from
equation (13) for constant S and tabufated in Table 1 (note
(da/da) 5_g, > 0).

To summarize, it has been shown that the system of
equations (8) possess the following properties:

() F(x,®) is differentiable in a neighborhood of (x,@) =
(XS!G-’O);

(i) a locus of equilibrium points determined by the
Sommerfeld number;
the matrix A% has a single pair of complex conjugate
purely imaginary eigenvalues +i{Q,(Q, > 0) for each
¢, < 0.8. The remaining two eigenvalues have
negative real parts;

() (da/d®) -4, > 0foreache; <0.8.

Therefore, the conditions of the Hopf bifurcation theorem
are satisfied and the existence of small-amplitude periodic
solutions of the system at speeds close to the threshold speed
has been proved. It remains to determine the direction of
bifurcation and the stability of the periodic orbit. This in-
formation is deduced by calculating the sign of the quantity
6'(0) which may be determined from the algebraic formulas
derived by Poore [13]. Use of the formula requires the
calculation of the following:

(iii)

(/) the left and right eigenvectors for the eigenvalue
+if)y of A%,
(i) the elements of the matrices F,, and F,,,.
(iif) theinverse of the matrices A% and (A% — 2iQyI).
Although the application of the formula is long and tedious
it is relatively straightforward.

Results

The calculated values of 6/(0) are given in Table 1. The
results indicate that there are three separate regions of
parameter space (Fig. 3).

Regions I(0 < ¢, < 0.14) and II1(0.74 < ¢, < 0.8). In
these regions 6’(0) < 0 and therefore subcritical bifurcation
occurs (i.e., for @ < &;). From the remarks made earlier it
follows that the bifurcated periodic orbit is unstable. From

Journal of Applied Mechanics

the uniqueness theorem proved by Hopf [8] no small-
amplitude orbits can exist for @ > &, (but there may be large-
amplitude orbits).

Region II(0.14 < ¢ =< 0.74). The largest of the three
regions: 6’(0) > 0 and therefore supercritical bifurcation
occurs (i.e., for @ > @p). The bifurcated periodic orbit is
stable.

Numerical Investigation

A numerical investigation was carried out to verify the
results of the theory and to investigate how the whirl orbits
develop at speeds well away from the threshold speed. The
equations of motion (8) were integrated on a digital computer
using a variable-order Adam’s method [16]. The results are
summarized here by selecting three different values of the
system parameter S = 0.035, 0.2, and 2.0. These particular
values were chosen because they each cross the' stability
borderline in a separate region of parameter space (Fig. 3).
For each value of S the equations were integrated for a range
of values of the rotor speed and initial conditions. Particular
emphasis was placed on the effect of the initial conditions on
the final motion of the journal (if at all). Results are shown in
graphic form obtained by using a Calcomp plotter (Figs. 4, 5).
Each plot represents the motion of the journal center (the
circle at e = 1 is known as the clearance circle and represents
the orbit of the journal center when the journal surface makes
contact with the bearing side).

Figure 4 illustrates the behavior of a rotor with a system
parameter of 0.035. Well below its threshold speed the
journal is stable and spirals into the equilibrium position
(Figs. 4(i), 4(ii). However, at a rotor speed of 2.5 (< @) there
are two different solutions depending on the initial conditions
(Figs. 4(iii), 4(iv)). Close to its equilibrium position the
journal is stable (Fig. 4(iii)), but if started a long way from its
equilibrium position the final motion is a large-amplitude
limit cycle (Fig. 4(jv)). This is evidence for the existence of a
stable limit cycle surrounding the unstable one established by
bifurcation theory. The same features are observed at a rotor
speed of 2.6, which is still just below the threshold speed
(Figs. 4(v), 4(vi))—the limit cycle is slightly larger. Above the
threshold speed the journal is unstable for all initial con-
ditions and approaches the bearing side (Figs. 4(vii), 4(viii)).

The behavior of a rotor with a system parameter equal to
0.2 is shown in Fig. 5. For rotor speeds below the threshold
speed only the equilibrium solution was found (Figs. 5(i),
5(ii)). However, -immediately above the threshold speed a
stable small-amplitude whirl orbit appears, independent of
the initial conditions (Figs. 5@iii), 5(fv)). This is the stable
periodic orbit established by bifurcation theory. The am-
plitude of the orbit increases steadily as the rotor speed is
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Fig.4 Whirl orbits for a rotor with a system parameter = 0.035

increased, but the orbit remains independent of the initial
conditions (Figs. 5(v), 5(vi)), before becoming completely
unstable at a speed of 2.0 (Figs. 5(vii), 5(viii)).

The behavior of a rotor with a system parameter equal to
2.0 is similar to the system with S = 0.035 below the threshold
speed with a stable limit cycle surrounding the unstable one.
Two solutions are still possible above the threshold speed—a
stable limit cycle or complete instability -depending on the
initial conditions. A detailed numerical investigation suggests
that the bifurcation behavior of the system is as shown in Fig.

6(iii); behavior of the systems for § = 0.035 and 0.2 are as

shown in Figs. 6(i), 6(ii) respectively.

248 /Vol. 51, JUNE 1984

Fig.5 Whirl orbits for a rotor with a system parameter = 0.2

Discussion of the Model

It is appropriate finally to comment briefly on the model
that has been used in this paper—a long bearing operating
with a half film. The model is a simple one and was chosen
because it provides simple analytic expressions for the
hydrodynamic forces (see Appendix). The model allows for
cavitation, but the author is aware that the boundary con-
ditions employed represent a crude description of both oil
film rupture and film reformation [17]. Use of a more ac-
curate model in this respect would be extremely complicated
(the difficulty being in determining the direction of bifur-
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Fig.6 Bifurcation diagrams for different rotor systems

cation). It should be stressed that a more accurate model does
not alter the bifurcation character of the problem, but merely
the value of the threshold speed and whirl frequency for a
particular ;. It would be extremely interesting to know if a
different mode] also has regions of parameter space in which
the bifurcation is of different character.

Conclusion

The onset of oil whirl in a simple rotor system supported in
fluid film journal bearings is a bifurcation phenomenon
which may be examined using Hopf bifurcation theory. The
existence of small-amplitude periodic solutions of the
equations of motion that govern oil whirl has been established
for rotor speeds close to the threshold speed. For the par-
ticular case studied (i.e., a long bearing with a half film) the
bifurcation may be subcritical, or subcritical depending on the
value of €. )

A numerical investigation supports the findings of the
analytic work and a combination of the two methods provides
a comprehensive examination of the features of the equations
that govern oil whirl. When supercritical bifurcation occurs
there is a gradual transition from stability to instability; a
stable, small-amplitude whirl orbit appears as soon as the
rotor speed exceeds its threshold value. The amplitude of the
orbit increases gradually as the speed is increased and the
journal does not become unstable until well above its
threshold speed. When subcritical bifurcation occurs the
behavior of the rotor is more complicated and, in general,
dependent on the initial conditions. Stable orbits may exist
both above and below the threshold speed; there is no gradual
transition from stability to instability.

Since the features described in this paper are due to the
nonlinearity of the equations the limitations of a purely
linearized approach are exposed. This is not to say that
nonlinear effects should always be included in bearing
calculations, but there should certainly be a greater awareness
of the role that the nonlinear terms may play.
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APPENDIX

Neglecting flow in the axial direction the Reynolds equation

for a journal bearing is [14]:

2
% {(1 + ecosf)? —Z% } = 6;&( ? ) {(2&)— w) esind + 2écos()}
and is referred to as the ‘‘long bearing approximation.”’

The equation may be integrated, together with appropriate
boundary conditions to obtain the hydrodynamic pressure
generated in the bearing. Here it is assumed that the oil film
occupies only the converging half of the bearing (Fig. 1) and a
cavity exists in the diverging region [1], which yields boundary
conditions.

*<0<2w (zero pressure
corresponds  to
atmospheric pres-
sure)

pO®=p(r)=0; p=0 for

The hydrodynamic forces are then calculated by integrating
the pressure distribution in two perpendicular directions (Fig.

1):
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x T ) 2¢,B 2(n? —8)(2+€2)
F,=LRj0p(6) cos6d6 F,—LRSOp(ﬁ) sinfdf By =By=—1 _eg;m = () 1427

_o_F_ U{ 2¢2(1=29) [72(2 + €2) ~ 16]¢ }

- F 2+e)(1 —e2) TR+ )1 — 232 )’ 26K, 2{8e22+ed) +mP(1- ) (2— €l +2€!) )

K= w(1-€e)"2 " Q2+e)(1-&){n*(1-e) +4e2)3/2

F, _60{ re(1-29) 4 }
Fl+eH1-)2 " 2+eH(1—¢)
2 2
The eight velocity and displacement . coefficients are g _ m{deg— (1 €5) 2}
calculated by differentiating equations (5) with respect to P e (1= e) V2 w21~ €2) +4e2)3/2
x,»,Xx,y and using equations (6)

2[26[7l'2(2+6§) —~ 16} + 71’2(1 - E?)[’n‘z(l +€§) +863~]] 2[462+ 7r2(2_ 62) ]
xx = K‘, = > H ,S
me (1 —€2) Y2 {n?(1 — €Z) +4e2 )32 PP —€f) +4e2)3/72
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Slow Interactions of Gravity Waves
and a Corrugated Sea Bed

The effect of a corrugated sea bed on the linear theory of gravity water waves is
considered. By straining the time variable, a perturbation solution is found in e (the
ratio of corrugation amplitude to mean water depth), through first order, for a
wave system that is arbitrarily oriented with respect to the corrugations. That
solution breaks down when the wave number k normal to the corrugation is a half-
integer multiple of the wave number 2w of the corrugations, i.e., when k =
w,2w, . . . . Of these singularities, the first (k = w) appears at the first order. To
obtain a uniformly valid zeroth-order solution we include a zeroth-order reflected
wave system, and obtain an alternation between incident and reflected waves on a
time scale of order 0(e~1). As representative of the other singular wave numbers,
we consider k = 3w, which singularity appears at the third order, and obtain a
uniformly valid solution through second order (for the shallow water limit).
Nonlinear effects are considered to the extent of noting that the zeroth-order linear
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and nonlinear results are identical, even for the first singular wave number k = w.

Introduction

The mutual interaction of sea bed topography and gravity
water waves is of considerable interest to coastal engineers,
especially insofar as certain topographies are capable of
protecting the beach by the reflection of wave energy. Of
fundamental interest is the case of a sinusoidally corrugated
sea bed wherein the corrugations are doubly infinite (in the
horizontal direction normal to the corrugations), or where
there is present only a finite ‘“‘patch’’ of corrugations. These
two subcases have been studied analytically, most recently, by
Davies [1-3], and companion experimental results have been
reported by Heathershaw [4]. An extensive literature review is
provided in [1].

In connection with the problem of a zeroth-order wave
traveling normal to a doubly infinite corrugation, Davies
obtains, at the next order, two corrections: one wave whose
wave number is the sum of the wave numbers of the zeroth-
order wave and the corrugation, and which is always onward
transmitted, and one whose wave number is the difference of
those wave numbers and which is reflected if the wave number
of the zeroth-order wave is less than that of the corrugation.
Furthermore, Davies notes that the amplitude of the reflected
wave tends to infinity as the wave number of the zeroth-order
wave approaches half the wave number of the corrugation, so
that his perturbation solution is not uniformly valid. He also
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notes that the second-order solution is singular for @/l wave
numbers. In the present paper, we examine the singularities,
and obtain uniformly valid solutions by a straining of the time
variable.

Of course, resonant interactions have been discussed in the
literature in a number of settings. For instance, Rhines and
Bretherton [5] encountered such resonance in their study of
Rossby waves in an ocean with a sinusoidal bed, Rhines [6]
explored the main features of wave propagation in a periodic
medium by applying Floquet theory to the relevant Hill’s
equation, and Mitra and Greenberg [7] encountered an in-
finite sequence of resonances in their study of Kelvin-
Helmholtz instability of a free surface in the presence of a
corrugated sea bed.

Formulation

We consider the linearized theory of gravity water waves in
the presence of a corrugated sea bed. Assuming the flow to be
irrotational and incompressible, we have q = V ¢, where q is
the fluid velocity field, Vv = i8/0x + jda/dy + k 8/0z, &(x,0)
is the velocity potential, ¢ is the time, and where x,y,z are the
right-handed cartesian coordinates depicted in Fig. 1. It is
known [8] that ¢ is governed by the boundary value problem

V29=0, —h(x¥)<z<0, x*+y’<om, (la)
dy+8h, =0, z2=0, x*+y'<o, (1b)
¢z = _h/(x)¢x) Z= —h(X), X2 +}’2 <°°7 (IC)

where g is the gravitational acceleration,
h(x)=d(l +ecos2wx), O<e<<l, w>0 2)

is the undisturbed water depth (Fig. 1), and subscripts denote
partial derivatives.

To find bounded wave motions, we use the assumed
smallness of e and seek a strained time variable solution
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wave elevation
"

Sz = nlx,y,t)

F
w 3

‘undisturbed free .
surface a

X

-d (1l + e cos 2wXx)

7 =
Fig.1 Flow geometry
(X, )=y (X,7) + e, (X, 7))+ . . ., 3a)
=1+ oje+ae?+ ... )8 (3b)
Putting (3) into (1) we have, through 0(e?), the problem
sequence
0(1): V2¢,=0, —-d<z<0 (4a)
Sorr + 800, =0, 2=0 (4b)
¢ =0, z=-d (40
0(e): V24, =0, —d<z<0 (5a)
1+ 81 = —20Bg,, 2=0 (58)
&1, =2wd sin 2wx ¢, +d €05 20X by, 2= —d (5¢)
0(e?): Vv2i¢,=0, —-d<z<0 (6a)
b27r + 802, = — 20 by, — (0 * +200) 0., 2=0 (6d)
2, =20d Sin 2wx ¢ +d cOS 2wx ¢,
— wd? sin dwx ¢gy, ~ % d?(1 +cos dux)by,,,, z=-d  (6€)

we can see that (8) includes traveling waves (4 = 0 or B = 0),
standing waves (A = + B), and combinations.

Before turning to the 0(e) and 0(¢*) systems, we note, for
reference, that

V2ip=0, —-d<z<O0 (11a)
b +g8, =R, 720 (110)
d)z:O’ z::..—d (llc)
admits the solution
_ cosh L(Z + d) e,'(Rx+Sy+ T, (12)
gLsinh Ld— T? cosh Ld
and that
Vip=0, —d<z<0 (13a)
b, +86, =0, z=0 (13b)
b, = Rx+SI+TD 72— g (130)
admits the solution
(T?sinh Ld — gLcosh Ld)cosh L(z + d)
o=
L(gLsinh Ld ~ T?cosh Ld)
+ SinhL(z+d)]ei(Rx+Sy+T7)’ (14)
L

provided that the denominators are nonzero; in each case, L
= V(R2+S%). If we do have gLsinh LD— 7% cosh Ld = 0
then we will say that exp i(Rx+ Sy + T7) is a secular term. By
virtue of (9), we see that exp i(kx=+/y+ or) will be secular
for any combination of signs. Put another way, exp
i(x£kxxly+g7) will be secular because it is a solution of the
homogeneous system (4).

Now turning to the 0(e) system (5), we see that the ¢,,, term,
in (5b), is secular, so we must set

Using (14), we have, as the solution of (5),

(o?sinh K+ d—gK* cosh K*d)cosh K+ (z+d)

Ad
b= 5 +2wk)[

K*(gK*sinh K*d—¢%cosh K+ d)

Ad [(ozsinhK“d—gK”coshK‘d)coshK‘(z+d)
K~ (gK sinhK~d-g*coshK~d)

+ ——-2—(1(2 —2wk)

a, =0. (15)
sinh K*(z+d) ] il 2u)x+ly— o1l
K+
inhK-(z+ i
+ sin Igz— d)]el[(kuM)X+[)’-UT] +{B]+CC, (16)

over x2 + y2 < oo,

Solution for Nonsingular Case

Looking for wavelike solutions, we choose ¢ of the form
¢0 — a(z)ei(k-x— a7) + b(z)ei(k-x+ar) + CC, (7)

where kex=kx+ /[y, and where CC stands for the complex
conjugate of the preceding terms on the right-hand side. It
will suffice to consider & >0. In the event that / = 0, the wave
crests are parallel to the corrugations. Putting (7) into (4), we

find that
¢o =cosh K(z+d)[Ae&*-0 4 Beik=x+ 0] L CC
= Acosh K(z + d)e’™**~ " + [B] + CC, ®)
where A and B are arbitrary constants, K =+/(k? + I2), and
o* =gK tanh Kd. . 9

We use the shorthand notation [B] to denote the term(s)
obtained from the preceding A term(s) under the substitutions
A — B, 7— — 7. Since the free surface elevation 7 is given [8]
by :

1 : .
ﬂ(x,)’,t)= - E d)l(x)yyoyt)’ (10)
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where K* =/[(k £2w)* + I*].

Finally, we consider the 0(e?) system (6) in order to compute
o . To accomplish that we need to focus on the secular terms
in (6b) and (6¢). Specifically, we express those equations as

$2,r + 8oy =20 A0® cosh Kd kx =09

+[B]+CC, z=0
b3, = AQei®+ b~ 1 [B] + CC+ NST,
where

(17a)
z=-d (17b)
o’sinh K*d—-gK+coshK+d

K*(gK*sinhK*d—o?coshK*d)
o*sinh K~ d—gK-coshK~d ]
,  (18)

K~ (gK~sinh K~ d— o*cosh K~ d)

and where NST stands for nonsecular terms. If we insist on
eliminating each of the secular terms we find that A =B=0,
which is unacceptable. In fact, we only need the secular terms
to bear a certain relationship to one another. If we seek a

response to the exp i(kx+/y— o7), exp i(kx+ Iy + o7) secular
terms in the form

¢, = [Dcosh K(z + d) + Esinh K(z + d)]e<+r—o7
+ [Fcosh K(z + d) + Gsinh K(z + d)]e’*x+ly+ a0 |

d?
o= [(k2 + 2wk +1%)?

+ (k% = 2wk + 1?)?

(19)
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then (17a) yields

h2Kd
E=2a,dq? 25024 (20a)
h2K
G =2, Bo? ‘%ﬁ , (20b)
and (17b) yields
F=a 2 @la)
K
Q
G=B-=. 21b
X (21b)

And, comparing (20) and (21), we see that
g9 Qg
= = 22
“1= 26%cosh?Kd _ Ksinh 2Kd’ @2)
while A and B remain arbitrary.

We may now obtain 5, through first-order terms, from (10),
as

1 € 5
n=- ‘é“boT oo ?¢11 o +0(e*)
=iodA { cosh Kd ei(kx+/y~a-r)
gd
2
+ £ ( k(k+20) +1 itk + 26 +ly — o1]
2 \(¢?~gK*tanh K*d)coshK*d
k(k—2w)+ 12

ei[(k —2w)x+1y—o71]

* (02 —gK~tanh K~ d)cosh K~ d
+0()] + 1B+ CC. 23)
The phase speed of the exp i[(k —2Nw)x + Iy — 07] harmonic
(N=0, =1)is o[l + aye? + 0(>)l/V(k —2Nw)? + 2.
Since long waves (i.e., the shallow wave theory [8]) are of
special interest, let us indicate the long wave limit of (23). In
that case Kd< <1,K*d< <1l,and K~ d< <1, so that

igA {ei(kx+/y— a7)

7]:
— i [W ei[(k+2w)x+ly—a1]
8w k+w
_ k=204 ei[(kflw)X+/y~uv]]
k—w
+0(e?)} + [B] + CC, (24)
where
o=Vgd K 25)
and
€ [k(k - 2w) + I?}?
T= {1 + [
32wK? k—w
k(k +2w) + 12]?
k+w

We note, as a partial check on the algebra, that we have
obtained these same results, (24)-(26), by applying straining
directly to the well-known linear shallow water equation

V «[gh(x) V1] = n,,. @7

Singularities
We see from (16) and (23) that the perturbation series
breaks down when ¢? = gK* tanh K*d or o = gK~ tanh
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K~d. Recalling (9), it follows that such breakdown occurs
when

28)

If the perturbation procedure were carried further, we would
find breakdowns not only at £ = w, but at k = 2w,
3w, ..., as well, i.e., when the x-wise wave number of the
disturbance is a half-integer multiple of the wave number
(2w) of the corrugation. Of these singular wave numbers, we
will see that most practical interest attaches to the first, k¥ =
w

k=w.

It is interesting that the singularity at ¥ = w can be
““‘detuned,” i.e., reduced to any desired degree, by choosing
I71 sufficiently close to w. For instance, consider the exp
il(k - 2w)x+1y—o7] term in (16), the coefficient of which is
infinite when k = w since then gK~ sinh K~ d — ¢* cosh K d
= 0in the denominator. This term is the response to the

%‘{(Kz - zwk)ei[(kaw)xHy—ar] (29)
term on the right-hand side of (5¢), which term can be
eliminated by adjusting / so that /| = w, sincethen K? —2wk
=k + 2 - 2wk =w? +1 —~ 2w = 0. In short, the wave
number & = w is nonsingular if /1 is sufficiently close to w,
i.e., if the first-order wave crests are sufficiently close to an
angle of 45 deg relative to the crests of the corrugations. This
curious situation is mentioned by Rhines [6] in connection
with the shallow water theory. However, we note here that
setting /| = w does not truly eliminate the £ = w singularity;
it merely suppresses it so that it does not appear until the next
order perturbation.

The Singular Case k =

In this section we consider the case £ = w (with /] # w).
More specifically, we consider the ‘““worst’’ case, the equality
k= w.

To motivate the form to assume for ¢, it is helpful to look
back at the form of ¢, and ¢; in the expansion ¢ ~ ¢ + € ¢,
for the nonsingular case. In fact it will suffice to look at (24),
and to observe the structure as k increases from zero toward
w, If we regard the exp i(kx + Iy — o7) term as an incident
wave, then we see that the exp i[(k + 2w)x + [y — ¢7] correction
is a transmitted wave, and that the exp i[(k — 2w)x + Iy — o7}
correction is a reflected wave (since k& — 2w <0 in the present
discussion). Furthermore, the reflection coefficient tends to
infinity as k£ — w. Of course the perturbation solution breaks
down as k£ — w, but in a crude sense the large 0(¢) reflection
suggests that we need to include a reflection term in the 0(1)
part of n when £ is close to w, i.e., a reflection with respect to
the corrugation. Thus, let us choose ¢, in the form

¢o = cosh K(z + d)[Aew+¥=7 4 Bef-wr+ly—on] 4 CC, 30)
where K = V(w? + ) and ¢ = V(gK tanh Kd). (By com-

parison, the direction cosine pairs in (8) are all the same,
namely k,/.) Then (5b) and (5¢) become

14y + &b, =2a; 0% cosh Kd [Aeiertly—on

+ Beft-axtly-00] L CC, 7=0 (3la)
2 2
¢Iz=[ w d[Aei(—mx+Iy—a-r)
+Bei(mx+ly-uf)]+CC+NST, 7= —d, (31b)

respectively.

Using the same strategy as in our calculation of o, in the
nonsingular case, we seek the response to the exp i(wx + Iy —
a7), exp i(— wx + [y — o7) secular terms in (31) in the form

¢; =[D cosh K(z+d) + E sinh K(z + d)]ef«x+y -7

+ [F cosh K (z +d) + G sinh K(z + d)Jeil ~wx+ly-on, (32)
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With this choice, a short calculation yields the two solutions

d(e? -1

“T 2K(sinh 212d’ B=-4, (334)

and
d(w? 17
a’%”ﬂ{_(si—rﬁﬁi’ B=A. (33b)
Thus, with the benefit of superposition,

¢o =cosh K(z + d)[A, ellox+—ali +ea]
_Alei[—ux\‘+[y—u(l+oze)/] +Azei[m+/y—q(1—ae)f]

+ A,ell-axtly—dl-ad] 4 OC, 34

where o = d (w? —?)/(2K sinh 2Kd).

To express (34) in a more suggestive form we introduce two
changes in notation. First, we set A, = (a,/4) exp (iy,), A, =
(a,/4) exp (iy,), and, second, we introduce a “‘fast time’’ ¢’
and a “‘slow time’’ t” as

+
agt' =0t — 4 2%, (35a)

(35b)

ot” = qeof —

Y-
2 »

in which case (34) becomes
¢o =cosh K(z+d){cos ot " [ —a,sin wxsin ([y —at”")
+ a,cos wx cos (Iy — ot ")] +sin ot ” [a, sin wx cos ({y — ot ")

—a,cos wx sin (ly — ot ")]}. 36)
Correspondingly,
1 1
n~ - ’g‘ o =0 ~ - "é‘ Do =0

=cos at"[c,sin wx cos (ly—at’)+cycos wx sin(ly—at')]

(37
where we have absorbed a factor of —(o/g) cosh Kd into the
arbitrary constants a,, a,, and called the results ¢, ¢,; (37)

includes traveling waves, standing waves, and combinations,
depending on ¢, ¢,. Especially interesting are the cases where

€2 = =x¢,. Forinstance, if ¢, = ¢, = c, then

+sin of ” [¢; sin wx sin (ly — ot ") + ¢, 08 wx cos (Iy — ot ')]

n=clcos ot “sin(wx+1Iy—oat’)

(38)
The solution given by (38) is characterized by a slow reflection
process, i.e., an alternation between the sin{wx + [y — of’)

and cos(—wx + [y — ot’) wave systems, with a period of
alternation

+sin ot” cos(—wx+1Iy—oat’)].

Period = 2 =0(e ). 3%
Qge

This slow energy transfer has already been noted in the
literature for the long wave limit, e.g., in Rhines [6], though
Rhines procedes instead by applying Floquet theory to the
separated form of (27). Observe from (33) that o« — 0 as d —
oo, so that the period is very long for deep water. Hence the
reflectlon process may be of limited practlcal interest in the
intermeédiate and deep water limit.

For the long wave limit one can extend the foregoing results
from £k = wto kK = w. Let & = (1 +Be)w, where (8 is an ar-
bitrary 0(1) constant. Then (27) becomes

el [(1+cosgn)n],

2k
+ <l+ecosl+6 )ﬂ»} =7y

With x/(1 + Be) =%, /(1 + Be) =7, and t/(1 + Be) = 7, equation
(40) becomes

(40)
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dg{I(1 +ecos 2kX) )z + (1 + e cOS 2k} = m315 (41)

which is of the same form as before, when we had & =
Thus, the long wave version of (38),

9~ C[C()S\/gd(co2 + 123" sin (wx+ 1y — \/ga'(wj +15)t")
+sinvegd(w? + )" cos (— ax + Iy —Vgd(w? +P)t")] 42)

still holds subject to the replacements w — (1+8ew,
x —=x/(1+fe), y — y/(1+Be), t = t/(1+Be).

The Singular Case k = 3w

, the singularities appear first at
the perturbations of order 1, 3, 5, . . ., respectively. For k =
2w, 4w, ..., however, their appearance is somewhat
delayed; e.g., for k¥ = 2w they do not appear until the per-
turbation of order 6. Thus after £ =~ w, the next to appear is k
=~ 3w. Hence, in this section we mention k¥ = 3w, as
representative of the ‘‘higher order’’ singularities. If, for the
sake of algebraic simplicity, we limit our attention to the long
wave limit (shallow water theory), with / = 0, we obtain

For k = w, 3w, 5w, ...

n~ng=[cos at”(c,; cos 3wx cos ot’ + ¢,5in 3wx sin ot ')

—sin ot " (c;cos 3wx sin of ' + ¢,5in 3wx cos of )], (43)
where
207 i+

=gl - —= Z)t— , 44

ot U( 152 € 3 (44a)
3 \[/1 _‘pZ

Y= e gt — 2 44b
0 T T (440

As before, the cases ¢, = =c, reveal a slow reflection
process, although in this case the period of the reflection
process is

2048
9wV gde
which is perhaps too long to be of interest in most ap-
plications. For instance, if we adopt, as representative
(Langhorne [9]), the values w = /10 meters~', d = 10
meters, and ¢ = 0.05, then the period (45) is around 21 days!
And the period is even longer than 0(¢®) for the other singular
wave numbers £ = 2w, 4w, Sw, 6w, ... . Only for the
smallest singular wave number, k¥ = w, does the period seem
to be short enough to be of practical interest. For example,
for the case selected above the reflection period (as given by
[9] with & = 1/4 and ¢ = wVgd in the long wave limit) is only
around 2.7 minutes.

Period = =0(e73) (45)

Nonlinear Effects

In this section we take a limited look at the effects of
nonlinearity. The full nonlinear boundary value problem is
(see [8])

V2¢=0, —h(x)<z<n(x,y,0) (48q)
—(bz +77.\'d).\’+77y¢y:0» Z=7I(X,}’al‘) (48b)
1
gnt+é + X (2 +¢,2 +¢,2)=0, z=nxp,0) (48¢)
qu =—h ’(x)(bx, = '—h(x) (48d)

over x2 + y? < oo,

It is found that the secularity condition is unaffected by the
nonlinear terms, so that the zeroth-order solutions (for ¢q, 19,
o) are the same as predicted by the linear theory presented in
the foregoing sections—at least for k& # 2w, 3w,
4w, . .., since in those cases we must go beyond 0(e) in order
to finalize the first-order solution.
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Conclusions

We first examined the effect of a corrugated sea bed on the
linear theory of gravity waves. Considering a linear com-
bination of zeroth:-order waves moving in the directions
:l:(kl+1]), we obtained solutions for ¢ and n which are
uniformly valid (in space and time) through 0(e), with the help
of a straining of the time variable (not included in [1]),
provided that k#w, 2w,.... The amplitudes of the
+ (ki +[j) directed wave and the — (ki + I_]) directed wave were
found to be independent so that one can form traveling waves,
standing waves, or combinations. Each of these zeroth-order
waves admits two first-order corrections, as seen in (23).
Consider, for example, the +(kl+IJ) directed zeroth-order
wave. It admits one first-order [(k+2w) i + 1_]] wave, whose
crests are more closely aligned with the corrugations, and one
first-order [(k—2w) 1 + [j] wave, whose crests are less closely
aligned with the corrugations. Thus, we will refer to the latter
wave as ‘‘reflected.”” The amplitude of this first-order
reflected wave tends to infinity as K — w, and this fact led us
to include a reflected zeroth-order wave in the singular case k&
= w. A uniformly valid zeroth-order solution was thus ob-
tained for ¥ = w. This solution exhibits the possibility of
direction reversal on a time scale of order ¢!, as has been
reported in the literature for a variety of physical settings (e.g.
[61).

It was also noted that the ¥ = w singularity could be
suppressed until the next order perturbation by setting /| =
w (in which case the zeroth-order wave crests are at an angle of
45 deg to the corrugations).

As in the k = w case, the higher singularities (k = 2w,
3w, . ..) require the inclusion of reflected zeroth-order

Journal of Applied Mechanics

waves, and one again obtains the slow reversal phenomenon,
although on a much longer time scale than for &k = w.

Finally, nonlinear effects were considered to the extent of
noting that the linear and nonlinear zeroth-order solutions are
identical — provided that ¥ # 2w, 3w, ..., with no in-
formation obtained for the cases k = 2w, 3w, . . .
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The Analysis of Multilayer
Elastomeric Bearings

When a multilayer elastomeric bearing is sheared by end loads, the top and bottom
surfaces of a typical plate are subjected to a shear stress distribution which causes
bending of the plate. A new approach to the analysis of these bearings is presented
which systematically takes into account the flexibility and subsequent warping of
the plates. First, the displacement field of the bearing and the shear stress
distribution are derived, within the framework of classical linear elasticity, from
compatibility conditions between rubber pad and steel plate. Next, use of a second-
order approximation to the nonlinear equilibrium equations leads to a new ex-
pression for the critical load of the bearing which depends on the bending stiffness
of the plate. Under the assumption of perfectly rigid plates, this expression is in
agreement with previous formulations. For flexible plates, however, the proposed
expression shows that previous formulations lead to an overestimate of the buckling
load which might become important for extremely thin plates and low values of the
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shear modulus of the rubber.

Introduction

A multilayer elastomeric bearing is a type of composite
column consisting of alternate layers of thin rubber sheets
bonded to metal plates. Due to the extremely high value of the
bulk modulus relative to the shear modulus in natural rubber,
such an arrangement prevents the lateral expansion of the
rubber layers and, therefore, results in a column capable of
withstanding high compressive loads with only a small axial
deflection while, at the same time, preserving the low shear
resistance of rubber to shearing [1-2].

The high compressive stiffness and low shear stiffness make
these barings useful as vibrations mounts, shock absorbers, or
bridge pads, and recently in earthquake engineering as base
isolation devices for the protection of buildings against strong
ground motions [3]. When used as seismic isolation mounts
for buildings, the multilayer elastomeric bearing carry the
vertical load of the building with small deformation while
producing a very low fundamental frequency in the horizontal
direction. This requires a very low horizontal stiffness;
typically the vertical and horizontal stiffness differ by a factor
of 300-400. The horizontal stiffness can be varied by selecting
the total height of elastomer and the vertical stiffness can be
increased by using many thin layers separated by steel plates.
The thickness of the plates plays no role in these design
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considerations and the steel plates are generally taken to be
rigid. However, low fundamental frequency in horizontal
motion leads to a beariong, which although short (Fig. 1 and
Fig. 3), is prone to buckling under vertical load due to the very
low values of its shear stiffness [1]. The stability analysis used
at present assumes the steel plates to be rigid and there is no
way to assess the influence of the plate flexibility in the
buckling load. The plates may be made thick enough, by rule
of thumb or by experiment, to ensure that their deformation
is in fact negligible. But this will add to the total height of the
bearing and thus affect the buckling load. Space requirements
also limit the height of the bearing. Thus it is important to
have a theory for the stability of elastomeric bearings which
includes the flexibility of the reinforcing plates.

In the past, the stability analysis of elastomeric bearings has
been based on the approximate linearized theory of buckling
developed by Haringx [4], in which the effective compression
bending and shear stiffness of the composite column are
determined from the apparent compressive bending and shear
stiffness of a single column unit [1, 2]. Expressions for these
elastic constants can be found in the literature [5-7]. As
shown in [8], Haringx’s treatment may be derived as a second-
order approximation to the nonlinear equilibrium equations
of finite elasticity under the ‘‘plane sections remain plane”
assumption. For laminated bearings, this kinematic
assumption amounts to considering the plates to be perfectly
rigid so that the axial warping is completely restrained. An
extension of Haringx’s formulation to the case of plates of an
arbitrary shape, not necessarily flat although perfectly rigid,
has been reported in [9].

The systematic neglect of the flexibility of the plate is,
therefore, the central assumption in previous analyses of the
stability of multilayer elastomeric bearings. In many ap-
plications this assumption is quite unrealistic. Figure 1 shows
an elastomeric bearing for a base isolation system, under test
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Multilayer elastomeric bearing used in seismic base-isolation
systems under experimental test at the Earthquake Simulator
Laboratory of the Earthquake Engineering Research Center (E.E.R.C.)
of the University of California, Berkeley

Fig. 1

at the E.E.R.C of the University of California, Berkeley. The
severe warping experienced by the plates is apparent and a
physical explanation for this effect is illustrated in Fig. 2. Due
to the shearing of the column, the top and bottom surfaces of
any plate are subjected to a shear stress distribution that
causes bending of the thin plate. In this paper, a theory that
consistently includes the effect of the finite stiffness of the
plate will be developed. Our formulation can be outlined as
follows.

(/) The distribution of shearing stress acting on a typical
plate is first obtained by enforcing compatibility of
displacements and shear stress between metal plate and rubber
layer. The dependence of the lateral deflection of the bearing
only on the axial coordinate is the key assumption made
beyond those of the linear theory of elasticity. Such an
assumption amounts to neglecting the in-plane extension of
the plate.

(ii) Integration of the strain-displacement relations leads to
an expression of the displacement field which includes a
warping function depending on stiffness of the plate and
proportional to the amount of shear. Thus, the ‘‘plane sec-
tions remain plane’’ assumption no longer holds in the present
approach. In the context of the linear theory, the resulting
field equations correspond to a Timoshenko type of beam
theory in which the explicit expression of the shear coefficient
depends on the stiffness of the plate. The limiting cases in
which the stiffness of the plate tends to either zero or infinity
are also examined.

(iif) The stability of the bearing is examined by considering
second-order equilibrium equations discussed in [10]. For
completeness, a brief justification of these equilibrium
equations is given in the Appendix. The resulting second-
order theory leads to an expression for the buckling load that
depends on the stiffness of the plate through the shear
coefficient. This expression yields values of the buckling load
always lower than those predicted by Haringx’s formulation.
In the limit, as the plate becomes infinitely stiff, both
predictions coincide.

Basic Assumptions

A composite beam in the form of a typical multilayer
elastomeric bearing is illustrated in Fig. 3. The x,;-axis,
normal to the steel plates, is the axial axis of the bearing. In
the analysis of the composite system consisting of the rubber
layers and steel plates, we assume that thelateral displacement
of the composite system u, depends solely on the axial

Journal of Applied Mechanics

Fig. 3 A typical multilayer elastomeric bearing

coordinate x,. For closely spaced plates, this assumption
amounts to neglecting the in-plane extension of the plates and
the bulging effect of the elastomer. In addition, we assume a
state of plane strain (or stress) so that the plates are subjected
to cylindrical bending and further reference to the x5 coor-
dinate may be omitted. The displacement field of the com-
posite system then takes the form

Uy =v(xy) (1)

Denoting by a superposed ‘‘prime” differentiation with
respect to the indicated variable, the components of the in-
finitesimal strain tensor e are given by

ou 1 u
511=§, €12=§[U'(X1)+6—x2]» e =€3=0 (2)
1

Uy :u(xl)xz)a

Let G denote the shear modulus of the rubber. We assume
the metal plates to be thin enough so that the shearing stress is
determined exclusively by the deformation of the rubber.
Hence, from (2) the constitutive equation for the shear stress
is

, du
o2 =2G 612=G[U (x)+ a—xz] 3)
By differentiating both sides of equation (3) with respect to x,
it follows that
3*u 1 oy
a2 G ax,

©

JUNE 1984, Vol. 51/ 257

Downloaded 02 May 2010 to 171.66.16.25. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



8 3 X |

e

p
l
>
|
!
1
4] 2

DEFLECTED MiDOLE  /

SURFACE —————

/
-

Fig-4 Geometry of a typical plate

It will be shown herein that the. form of  the- axial
displacement u(x,,x,) follows from the compatibility be-
tween the rubber pad and metal plate.

Analysis of the Plates

A typical plate of thickness e, normal to-the x,-axis and
located at x, = ¢, is shown: in Fig. 4. It is assumed that the
thickness e is small enough so the usual Kirchhoff’s assump-
tion is applicable. Our objective is to obtain the shear stress
distribution on the top and bottom surfaces of the plate due to
shearing of the column.

Equilibrium equation for the Shear Stress. If w({x,)
designates the deflection of the middle surface x; = ¢ of the
plate, the slope of the deflected surface is w'({x,) =
dw(¢{,x,)/dx,, and the displacement field is then given by

Ui (x1,%) =w({x),
dw({x2)
1 x2) = = [y = f =2 )
X2

where x,€({—e/2,{+e/2) and x,€(—h/2,h/2). The com-

ponents of the infinitesimal strain tensor ¢ are

d*w({,x,)

622=—[x1—§]“72, €2=0, €;=0 )]
The bending m and shear force Q acting on a section of the
plate a distance x, from the axial axis x; of the bearing are

defined as
{+e/2 t+e/2
m=={  n=fomar. 0=[ " opan @

In terms of the Young modulus £, and the Poisson’s ratio v,
of the plate, the bending stiffness of the plate is given by
D,=E,—E,e*/12(1 - ), and from (6) and (7) the con-
stitutive equation for the bending moment m takes the form
d*w($,x3)
dx}

Let 77, ¢~ and 7", o* be the tangential and normal stresses
acting on the surfaces x, ={—e/2 and x| = {+e/2, respec-

®

m=D,

258/ Vol. 51, JUNE 1984

tively. Since we are concerned only with the shear stress
distribution caused by shearing of the column, we must have
77 = 77.Thus, setting 7 = 7~ = 7+, and defining Ag = o*
— o7, by standard integration through the thickness e of the
plate of the local equilibrium equations g,55 = 0 (zero body
force assumed), we obtain

dm - dQ

—er=0, +Ao=0 9
o +Q—er ax, o )
from which it follows
d*m dr
—— g —— = A 10
ad  Cax, ° (10)

By compatibility between the axial displacement field
u(x,,x,) of the composite system, and the displacement field
w({,x,) of the plate we must have w({,x,) = u({—e/2,x,) =
u({+e/2,x,). Thus, since the shear stress field o, must
satisfy the condition 7 = o,({—e/2,x;) = o;5(8+e/2,x,),

equations (4) may be written as
d? , 1 d
M = 4T 480
dx; G dx,

Making use of (11), constitutive equation (8), and the
equilibrium equation (9);, the bending moment m and the
shear force Q may be expressed in terms of the shearing stress
Tas
D, dr D, d*r
m= — —, == —
G dx; Q G dx}
and by substitution into equation (10) we arrive at
d’ Gel d Gel A h h
2 [ [2]% ne(-2D) o
dX2 Dp de Dp e 2 2
which is the differential equation of equilibrium for the
shearing stress 7 = 0,({—e/2,x,) = g5(+e/2,x,).

+er (12)

L=

Boundary Conditions. The distribution of shear stresses
on the plate must be such that the resultant moment and shear
force at the ends x, = =+h/2 of the plate vanish. Fur-
thermore, the symmetry of the problem demands the shear
stress ¢;, to be an even function of x, in the interval
(—h/2,h/2). Thus, making use of (12) we have the boundary
conditions

dr
(+x3)=1—Xx;), v n =0,
X7 X2=:!:3
d*r 2
[ e -\ T:l Xzzig =0 (14)
where the parameter \> = Ge/D, has been introduced for
convenience.

It is noted, however, that the completely homogeneous
problem L 7,; = 0 with boundary conditions (14) admits the
nontrivial solution 7, = constant. Thus, by Fredholm
alternative theorem [13], the problem posed by equation (13)
with boundary conditions (14) is undetermined up to an ar-
bitrary constant. In addition, for this problem to have a
solution, the forcing function f(x,) = N Aog/e must be
orthogonal to the solutions of the completely homogeneous
problem and, therefore, meet the condition

h/2
S ZAUdXZZO

—h/

15)

which shows that the resultant of the normal stresses acting on
the plate must be a moment say AM. A unique solution for the
problem posed by equation (13) with boundary conditions
(14) is obtained by requiring that

h/2
g rdx, =V (16)
—h/2
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where V = V({—e/2) = V({+e/2) is the resultant shear
force acting on both sides x; = {—e/2andx, = {+e/2of the
plate. By multiplying equation (13) by x,, integration by parts
and enforcement of conditions (14) it is found that the
resultant moment AM is related to the shear force V through
the overall equilibrium condition

h/2
N S —h/2

Shear Stress Distribution. The explicit solution of the
boundary value problem posed by equation (13) with
boundary conditions (14) and condition (16) requires an
explicit expression for the resultant normal stresses Ao acting
on the plate. In view of conditions (15) and (17) we may
assume that Ao is distributed linearly over the plate and,
therefore, given by.

AGXZ de= - Ve

)

AM Ve .
A0=——Tx2=—1—x2 (18)

Journal of Applied Mechanics

where I = 1/12 #*. The solution of the boundary value
problem is then easily found to be

V3 4x3 3 2
=V (-2 2 (- s con(P22)] o)
hl2 h ¥ Sinh(y) h

where
3G

Y Ep
The shear stress 7 given by equation (19) is plotted for various
values of the parameter v in Fig. 5. We note that as the plate
becomes more flexible; i.e; E, — 0 or e — 0, the parameter
— oo and the shear stress 7tends ot the parabolic distribution
7 — 3V/2h [1—4x3/h*]. On the other hand, as the plate
becomes stiffer, vy — 0 and the shear stress 7 — V/h; i.e., a
uniform distribution over the plate.

- V},).

The Composite System

Kinematics. Once the distribution of the shear stress 7 is
known, the expression for the axial displacement u, = u(x,
x,) follows by integrating (3) and substitution of the ex-
pression for 7 given by (19). The result is

V(xl)[g 2., 3
Gh 2

2 Xy — W2 X2
[ ssmicy s (5 ))
- n
27 2Sinh(y) h
where the function #(x,) represents the axial displacement of
the x,-axis. _
To express the displacement field fully in terms of

kinematic variables we introduce, as in [11], the average
rotation v (x,) of a cross section defined by

_ 1472
Y(x,)= _?S

where I = h3/12 is the moment of inertia of the cross section.
The substitution of (20) into (21) shows that the angle ¥ (x,) is
related to the resultant shear force ¥V (x,) by

up=u(x))=xv’ (x)+

(20)

X XUy (X1 ,X;)dx, 2D

—h/.

; Vi(x;)
—_— - 22
V) =v(x)- oo (22)
where the constant « has the expression
5/6
K= 23)

e [13(rmae ~)]

Equation (22) relates, through GQ«, the resultant shear
force V(x,) acting on a cross section of the composite system
to the angle B(x,) =»'(x;) — ¥(x,), the difference between
the slope of the deformed neutral axis and the average angle
of rotation of the cross section. Hence, the angle 3(x,) gives a
measure of the average distortion of a cross section due to
shear, and the constant Q« represents an ‘‘effective’’ shear
area. The parameter k, plotted in Fig. 6 v, has then an
analogous significance to that of the shear coefficient in
Timoshenko beam theory [11]. In fact, in the limit as vy — o
and the plate becomes infinitely flexible, it follows from (23)
that x — 5/6 which is in agreement with the expression for the
shear coefficient of a rectangular section when » = 0, [11].

The displacement field of the composite system then takes
the following final form

ul:lz(xl)_XZ‘Z'(xl)‘“(f’(xz)KB(xl)’ (24)

where the shear coefficient xis given by (23), and in addition

Uy =v(x,)
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13 3 2

B(xy) = [;*E‘*?]Xﬂ“ PPRe

__ 3 Sinh<27"2>
24?Sinh(y) h

h 3G
= — | = (1= 2
Y e«{ Ep( v5) (25)
B(x1) V,(xl)'_\z’(xl)
The dependence of the warping function ¢(x,) given by

equation (25), on the stiffness of the plate, through the
parameter v defined by (25),, is noted.

Il

Constitutive Equations.
defined by

For the bending moment M(x,)

h/2
Mod=-|" oy, 26)
—h/2
the constitutive assumption is expressed by the linear
relationship:

M(x)=Kg¥' (x)) @7

where Ky is the so-called apparent bending stiffness of the
system [6, 7]. Equation (27) is consistent with (26), the
definition (21) of ¥(x,), and the linear relationship a;; = E,
€)1, where the elastic constant of the composite system E 4 is
E, = Kg/I. The constitutive equation for the shear force
follows immediately from equation (22), namely

V(x)= G’ (x) = ¥(x))] (28)

where the shear coefficient « is given by (23). The shear
modulus G should be replaced by G ep/er where ey is the
total height of a single column unit and ey the height of the
rubber pad and one plate [1].

Equilibrium Equations, Linear Theory. The equilibrium
equations in terms of the resultant shear force and bending
moment, follow by integration of the equilibrium equations
of linear elasticity over the cross section of the bearing in the
standard manner. The well-known result is

M (x))+V(x)=0, V' (x)+q(x)=0

being g (x,) the applied transversal load.

The set of equations governing the linear response of the
composite system consists of the constitutive equations (27)
and (28) together with the equilibrium equations (29). For-
mally, they correspond to a Timoshenko type of beam theory.
However, the displacement field given by (24), obtained by
enforcing compatibility of stress and displacements between
the steel plate and rubber pad, includes a warping of the cross
section that depends on the stiffness of the plate. The ex-
pression for the effective shear coefficient given by (23) is then
consistently derived from this displacement pattern.

29

Limiting Cases. Two limiting cases of the theory are
possible.

(a) The Stiffness of the Plate D, — . From equations
(19), (23), and (25) it follows that the asymptotic expansions
as v — O for the shear stress 7, the shear coefficient « and the

warping function ¢(x,) are

= Y1) 6(62)=0+0(x?),

2
a +0(v%), )
1 2 4

k=1 105 ” +O(v*) 30)

Since ¢(x,) — 0 uniformly in (—#4/2, h/2), in the limit as
the plates become infinitely stiff we recover the classical
Bernoulli kinematic assumption. Furtheremore, since the
shear coefficient takes the value x = 1 in the limit as v — 0,
our derivation provides a rational justification for the usual
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Fig. 7 Resultant N of normal stresses and resultant V of tangential
stresses

choice of G2 as the effective shear stiffness of columns with
extremely stiff plates [1]. This is the only case considered in
previous formulations where the flexibility of the plate is
neglected.

(b) The Stiffness of the Plate D, — 0. This limiting
situation corresponds to a homogeneous beam with elastic
constants G and E = E,. Again, from equations (19), (23),
and (25) we find that in the limit as y — oo the distribution of
shear stresses, the shear coefficient x and the warping function
¢ (x,) reduce to

5 4x27 . 2

5
Xy, K=~

3
10 6

(31

The constitutive equations (27) and (28) together with the
equilibrium equations (29) show that in the limit as the
thickness of the plate or its stiffness tend to zero, we recover
the classical Timoshenko beam theory with shear coefficient «
= 5/6. Notice however, that the usual ‘‘plane sections remain
plane”’ deformation pattern no longer holds in the present
approach due to the presence of the warping function ¢(x,),
given by (31),, in the kinematics (24).! It is the warping of the
cross section that leads to the expression for the shear
coefficient [10].

The Nonlinear Theory

In this section we consider the stability of the bearing when
subjected to end loads. To obtain an estimate of the buckling
load, it suffices to consider a second-order theory.? First, we
consider a second-order approximation to the nonlinear
equilibrium equations. We may think of this approximation
as derived by establishing the equilibrium in a (deformed)
configuration obtained by an update of the reference (un-
deformed) configuration with the infinitesimal displacement
field. Next, we further simplify the formulation by in-
troducing the customary assumption of negligible extension in
the axial direction, leading to a linearized eigenvalue problem
for the critical load.

Second-Order Equilibrium Equations. For a straight
beam of length L and cross section {2, which is acted on by end
loads and zero body force, a second-order approximation to
the nonlinear equilibrium equations in terms of stress
resultants takes the form

"Instead of the angle \Zz(xl) defined by (21), one could choose 12
=0uy/9x, 'XZ _oas in {12]. Although ¥ # ¥, they are uniquely related by 5S¢
= 4yy + »’,"and thus either choice leads to an equivalent (Timoshenko) beam
theory. The difference becomes relevant when specifying boundary conditions.

2Second-order theories are systematically obtained by *‘successive ap-
proximations’’ (Signorini’s expansion. See e.g. [15] Sect. 63-67).
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N-yV = —P
Vilkb+( =o' IN = —H
M +v'P = [1+i'|H (32)

where « is the shear coefficient as given in [10, 11], and P and
H the axial (compressive) and vertical loads applied at the left
end, respectively. A superposed ‘‘prime’’ denotes dif-
ferentiation with respect to the axial coordinate X, in the
reference (undeformed) configuration. A detailed derivation
of equations (32) for the gernal case of an arbitrary cross
section @ is found in [10]. A justification of these second-
order equilibrium equations is given in the Appendix, and a
geometric explanation of the result is contained in Fig. 7. Due
to the warping of the cross section {2, the resultant of normal
stresses N no longer remains normal to the average plane of
bending defined by the angle ¥ but is shifted an extra angle
(1—«) [»' —¥]. On the other hand, the resultant of shear
stresses V is always parallel to the average plane of bending.
We note that if k = 1, then ‘‘plane sections remain plane’’ and
equations (32) reduce to a form which may be derived by
elementary procedures.

The nonlinear equilibrium equations for an elastomeric
bearing are then obtained simply by inserting in (32) the
expression (23) for the shear coefficient that depends on the
stiffness D, of the plates.

The Eigenvalue Problem for the Critical Load. A
linearized eigenvalue problem for the critical load P can be
obtained by assuming that the column is ‘‘almost’’ inex-
tensible in the axial direction. Explicitly

la’ll= max lid’|=higherorder sothat 1+ua’'=1 (33)
OsxsL

Such an assumption is particularly accurate in the stability
analysis of a multilayer elastomeric bearing due to the ex-
tremely high values of its compressive stiffness [1-7]. If the
plates are regarded as perfectly rigid, then x=1 and equations
(32) together with (33) reduce to the set of equilibrium
equations considered in [9].

Due to assumption (33) the constitutive equation (30) for
the shear force remains unchanged (see [10] for the details)
and equations (32) together with (27) and (30) lead to the
problem

(1-9P7 , H P,
- T Jr g = [+ g lveny
Kp" (X)) +Pv' (X)) = H, X,€Q,L) (34)

From (34) it follows that both the average rotation y(X,) and
the lateral deflection v (X ,) are governed by

L y(X)=0, L»(X)=0, X€0,L) (35a)
where L is the linear operator defined by
1-«kP
KB[I -9 ]
L Ok & p & 350
= +
»ax Pax (356)
14 ==
GQ

When proper boundary conditions are appended, one is led
to a linear self-adjoint eigen-value problem for the com-
pressive critical load P, . The result may be related to the
Euler’s critical load of the column P as

2P,

Pou=  (1-0P —0Peyz  ap, 1200
cri — K E — K £ £ 2
i+——— [(1 + ) ]
* GQxk + GQ« + GQ

This critical load should be compared with that due to
Haringx which neglects the flexibility of the plate andis given
by
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2P

4P, ] ”
GQ

Clearly, P, < P, except in the limit when « — 1, the
plates are perfectly rigid, and both expressions coincide. In
addition, the completely different asymptotic behavior
exhibited by expressions (36) nad (37) for extremely low
values of the shear stiffness GQ should be noted. While the
asymptotic expansion of (36) exhibits a linear behavior; i.e.,

Ho
Pcri/_

37

1+[1+

(1 —-nP; GQ
P, —— — =0 38
! GQ« Ky (38)
the asymptotic expansion of expression (37) gives
f GQ GQ
PH . | —P, — =0 39
crit P E 4as K ( )

E B

For extremely low values of the shear stiffness G4,
Haringx’s expression could severely overestimate the buckling
load of the column. Differences of the order of 10 percent in
the experimental measurement of buckling loads of columns
with flexible plates have been reported in the literature {9].

Conclusions

A theory for multilayer elastomeric bearings which con-
sistently includes the effect of the finite flexibility of the plates
has been presented. Explicit expressions for the shear stress
distribution and the axial displacement of the bearing have
been developed.

Within the framework of a second-order approximation to
the nonlinear equilibrium equations of finite elasticity, the
formulation presented leads to an expression for the critical
load of column that depends on the stiffness of the plate in a
simple manner. This expression yields values of the critical
load always lower than those predicted by Haringx’s ex-
pression for the buckling load which systematically neglects
the flexibility of the plates, and reduces to the latter in the
limiting situation of perfectly rigid plates.

The simplicity of the proposed expression for the buckling
load makes its use attractive in design to allow the thickness of
the reinforcing plates to be selected in a rational way.
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APPENDIX

We consider the simplified two-dimensional case in which
the (undeformed) cross section is @ = (—#k/2, h/2). For a
deformation x = x(X) of the beam B = (0, L) X Q, the local
nonlinear equilibrium equations may be written as [14]

DIV P+p,B=0, PFT=FP7 (4.1)

where P is the first Piola— Kirchoff (two-point) stress tensor,
F the deformation gradient, B the body force per unit volume,
and p,,s the density in the reference configuration. The stress
vector acting on a deformed cross section, measured per unit
of reference (undeformed) area Q, is given by

T=P'NEP11E1+P2|E2 (A.2)

where {E,, E, ] is a fixed cartesian frame such that N = El is
the unit normal to the reference (undeformed) cross section .
Assuming zero body force, integration of equations (A.1)
over Q and use of Green’s formula yields

d Py q(X,)
_S a0+ -0 (43
ax, Ja{ p, 0

where g (X,)E,is the applied (vertical) force, and {2 is simply
the open interval (—h/2, h/2). Let {1, A} be the “moving’’
frame composed by unit vector fields normal and tangential
to the deformed cross section. This frame is related to the
fixed frame (E,, Ez} according to
Fp —Fp }
Fp

(ot =l

where C = FTF. In terms of the stress fields (o, 7) normal and
tangential to the deformed cross section, the stress vector T in
(A.2) may be expressed as T = o i + 7l, and equation (4.3)
takes the form

(4.4)
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a0

AT dQ+ =0 (A.5)
dx, Je T 0 «

We note that in the /inear theory, A = 1in (4.5), and (g, 7) =
(011, 012), with o; being the components of the infinitesimal
stress tensor. If attention is restricted to a second-order ap-
proximation to (A.5), then only the linear part A of A enters in
(A.5). For the linear kinematics given by (24) and (31), which
is exact for Saint-Venant’s problem with Poisson ratio » = 0
[10], use of (4.4), leads to the following expression for A

e [ ) e [
A=1+ + ke’ (X,)
-y 0 -8 0

where a superposed ‘‘prime’’ denotes differentiation with
respect to X,, and ¢(X,) is the warping function given by
(31),. Substitution of (A4.6) into (A4.5) yields (g(X,) = 0)

A0t [ asi] ] o)

(A.7)

(A.6)

To within second order, the resultant N of normal stress and
the resultant V of tangential stresses, acting on the deformed
cross section, are given by [10]

N= SQ ad(2, V=SQ 7dQ, (A4.8)
We note that within the second-order approximation, the last

term in (A.7) can be estimated by replacing (o, 7) by its linear
part (a1, 012). Since the following identities hold

_ _ h/2
B, o ondo=uf|" 4'01-9ax,=0,

8], o ouda=(1-0B| oyda=(1-0AN  (4.9)

equation (A.7) reduces to

(N=¢V)=0,

d . .
Xm 2 (VI A=0AM =0 (4.10

By integration we obtain (32),,. The moment equilibrium
equation (32); can also be derived from (4.1), or directly
checked by elementary procedures.
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The paper examines the hydroelastic instability of an infinitely long plate subjected
to shearing load with two different boundary conditions, one side of which is ex-
posed to an incompressible inviscid flow, and the other side supported on an elastic

foundation. The analysis is based on the small deflection plate theory and the
classical linearized potential flow theory. The Galerkin method and Fourier
transforms are used. It is found that the effects of the shearing load and the elastic
Sfoundation on the divergence velocity can be illustrated by a single curve for both
clamped and simply supported cases.

Introduction

The hydroelastic instability of flat panels has been studied
extensively by many investigators [1-23]. For example,
Dugundji, Dowell, and Perkin {1} examined theoretically and
experimentally the aeroelastic instability of an infinite panel
on an elastic foundation in a subsonic flow. They reported
weak divergence followed by traveling wave flutter.
Thereafter, Dowell [2] and Weaver and Unny [5] indicated
that the instability of the infinite panel in subsonic or water
flow becomes one of static divergence. Ellen [6] discussed that
the post-divergence flutter would not occur if the three-
dimensional finite panel were considered. On the other hand,
less attention has been paid to the effect of shearing load on
the hydroelastic instability, owing to mathematical difficulty,
except for recent author’s study [24]. However, this problem
is of great technical importance, since the panels between
stiffeners used in ships and ocean structures are sometimes
subjected to shearing load.

The purpose of this paper is to examine the hydroelastic
instability of an infinitely long plate with finite width, when
its upper surface is exposed to an incompressible inviscid fluid
flowing in the longish direction of the plate, its lower surface
is supported on a continuous elastic foundation, and both its
edges are subjected to shearing load. On the basis of the small
deflection plate theory and the classical linearized potential
flow theory, the problem is solved for both simply supported
and clamped cases by means of the Galerkin method and
Fourier transforms. The divergence and flutter velocities are
determined for various values of the shearing load and the
spring stiffness of the elastic foundation. It is found that the
divergence velocity is lower than the flutter one, irrespective
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of the shearing load, the elastic foundation, and the boundary
condition. Hence the effects of the shearing load, the elastic
foundation, and the boundary condition on the divergence
velocity is clarified in detail.

Basic Equations and Boundary Conditions

Consider an infinitely long plate with thickness # and finite
width b subjected to shearing load T per unit length along
both edges, one side of which is exposed to an incompressible
inviscid fluid flowing with uniform velocity U in the longish
direction, and the other side supported on a continuous linear
elastic foundation with spring stiffness K. Taking the
coordinate system as shown in Fig. 1 and denoting by W, P,
and p,, the deflection of the plate, the perturbation pressure
of fluid on the plate, and the mass density of the plate,
respectively, the equation governing the motion of plate is,
from the small deflection theory, :

PmhW, +DVIW=2TW, , +KW+P=0 o))

where
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Eh? 4 ( 3? 92 )2
b=aa=m Vi \aa a2
In these equations, D, E, », and ¢ are the flexural rigidity,
Young’s modulus, Poisson’s ratio, and time, respectively,
while subscripts following a comma stand for differentiation.
For the boundary conditions at y =0 and b the following
two cases will be considered:

) W=w (c) W=W =0 ?2)

The perturbation pressure on the plat'e is given by the
linearized Bernoulli equation

P= "'Pf(‘b,l + UcI),x)z:O 3)

where p is the density of fluid and @ is a perturbation velocity
potential due to the deformed plate. For inviscid, in-
compressible, irrotational fluid, ® is determined by solving
Laplace’s equation

W, =0,

vi®=0 @)

with conditions

@ 10=W, +UW, for 05y=b )

=0 elsewhere
and®=0atz— oo,
where
L . O
V% = 6—2' + J + @

Here, the following nondimensional notations are in-
troduced for convenience:

™ W™ b
‘E‘ a y 7 b » g‘ b y Q= 7

b2K BT 2
k=——, A= , Qoz(l) | D

D 2D b mh

P W P

=Q [’ _ = —, =
T=h 0= e VT P e ©
_ pfb _E I_/2— _ pfb3(_]2
B ok T 0y =D

where a is a half wavelength of the deformed plate, while «, £,
A, V, and p are the factors of a wavelength, a spring factor, a
load, a velocity, and a mass ratio, respectively. With these
notations, equations (1-5) can be rewritten as follows:

L(w)y=w_,,+Viw—20 W, +kw+p=0 )
) w=w,, =0, (c)w=w_ =0 at 9=0,7 8)
p=—{(p/m) (d’n"‘aV‘b,g);:o ®
v36=0 (10)

b pir—0=W,, +aVw, for 0597

=0 elsewhere an
where ¢=0at {— oo and
~ 32 32 - (92 32 32
Vi=d?—+—, Vi=at—7+— +—
2= 33’;2 6772 3T 6&2 anz ag-Z

To determine the stability behavior of the plate, we must
first solve the boundary-value problem posed by equations
(10) and (11), substitute this solution into equation (9), and
then solve the resulting equation (7) under the boundary
conditions (8).

Method of Solution

Considering equations (8), one puts the deflection w as

264/ Vol. 51, JUNE 1984

=7 Y 8@y cos E+b,, sinf), (m=1,23,...)

n

() 8, = sin mn, (c) gn= cos (m—1)p— cos (m+1)y (12)

where a,, and b, are unknown parameters. Corresponding to
equation (12), the perturbation velocity potential ¢ will be in
the following form:

bd=e“"[¢(n,{) cOs £+ ¢y(n,¢) sin £] (13)
Substitution of equation (13) into equation (10) yields
Gjm + i — =0, (i=1,2) (14

The general solution of equations (14) satisfying the vanishing
condition at {— oo is of the form

8= e~ 914,(@ cos an+B,(q) sin anlda, (=1,2) (15)

where € =o? +¢2, and A;(g) and B;(g) are arbitrary func-
tions of g. These arbitrary functions are determined by using
equations (11) and (12), and Fourier integral theory. Thus

o= Lty )+

V(o )it

(G=1,2, m=1,2,3,...) (16)
Yu(m )
1 [ et — (=1 ~ mqldg:
= Vo wq@s )[cosqn (= 1)™ cos (m—mqldg: (s)
_ is‘” mqe”;f[sinqn—z(—lz)"' sin (w—;n)q] dg: (0
T Jo elg” —(m—-1)*1[g* — (m+1)?]
17)

The perturbation pressure on the plate may now be
determined by substitution of equation (16) into equation (9).
So far one has obtained expressions for w and p in terms of a,,
and b,,, satisfying exactly the boundary conditions. For the
determination of a@,, and b,,, one applies Galerkin’s method
to equation (7), which yields the following conditions:

S S Lw ),,(Cosé>dd£ 0, (n=1,2,3,...)
- sin E

After performing the aforementioned integration and
rearrangement, one finally obtains the following equations:

2 [Run =t = 24,0 ()

m Iﬂ

(18)

+()\Qnm -inBnnz)( bm )] =0,
pa— am
(mn=1,2,3,...) (19)
In these equations, for the simply supported case,

R, = w2 [(0‘2 + 7)2)2 + k]éjn,m/2

M, = w28, ,/2+unmK,, /T
Ay = o?nmK,, /7, B,,=—2aVunmkK,,/n 20)
2wanm(—1)"t" —1]
an = 2 2 ]
n*—m
P+ (-1 ~[(- 1"+ (= 1D"]cosw
Kow = | [(=1)" +(=1)"]cosng .

0 e(q? ~n2)(q —m?)

Transactions of the ASME

Downloaded 02 May 2010 to 171.66.16.25. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



Ack

Qcks
i
0

—_——

0 10 20

Fig. 2 Relations between the buckling load Ay, the corresponding
wavelength «qks, and the spring factors k of the simply supported strip
(s) and the clamped one (c)

and for the clamped case,
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Fig. 3 Relations between the divergence velocity Vg,, the
corresponding wavelength oo, and the spring factors k of the strip
without shearing load

and- the corresponding value of « for which flutter or
divergence occurs. These give the critical velocity V. and
wavelength «,. Through the detailed numerical calculation,
the divergence velocity was found to be lower than the flutter

dq

an = WZ[Dm—l(5m+n,2 + 6n,m - ‘Sm—n,z)
_—Dm+l(6n~m,2 ”‘5n,nz)]

M,, = 71'2(6,,,4.,,,2 +28mn = O1m—-n1 2)/2+ 16punmK,,, /v
Apm = 1602nMK /7, By =—32aVpnmK,, /=  (21)
0 _ 2ranm(m?® +n? - 2)[(- )"+ —1]

M —mA) [ —m)* - 4[(n+m)? 4]
D, = (2+m¥?+k
K = Sm 1+ (=D +[(=1)" + (- 1)"]cosmq])

" 0 elg’ — (n—1)*][g* — (n+ 1)])[q? — (m —1)*][g* - (m +1)}]

where 8, ,, is the Kronecker delta and the integrals can be
evaluated numerically.
For a nontrivial solution to equation (19), the determinant

of the coefficients must vanish, which results in the
characteristic equation
A(k’ o, >\le9 I./:w) =0 (22)

Under the specified boundary conditions, the determinant

A will be a function of &, a, A, u, ¥, and w. Hence, for given
values of k, «, A, u, and V, one can determine the value of the
complex frequency, w=wr + iw;. For wgp #0 and w; <0, the
motion of the plate is unstable (so-called flutter instability).
For wi =0 and w; <0, the plate is statically unstable (so-called
divergence instability). Continuously changing the values of

- -the wavelength «, one can determine the minimum value of ¥

Journal of Applied Mechanics

one, independent of the shearing load, the elastic foundation
and the boundary condition. Further, while the divergence
mode was the form of standing waves, the flutter mode was
one of traveling waves. It is expected that the stability
boundary of the present problem also is one corresponding to
static divergence as the results obtained by Dowell [2], and
Weaver and Unny [5]. In the near future, author intends to
report the flutter instability of panels in a compressible fluid
with the effect of structural damping taken into con-
sideration. Hence, the following numerical results are shown
with particular focus on the divergence instability. The
buckling load of the plate under shearing load can be
determined by setting 4= V' =w=0 into equation (22).
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Fig. 4 Relations between the divergence velocity V., the
corresponding wavelength og,,, and the shearing load factor A of the
strip without the elastic foundation
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Fig. 5 Rglatlons between the divergence velocity Vcy,, the
corresponding wavelength «cy,, and the shearing load factor X of the
strip on the elastic foundation k

Numerical Results and Discussions

On the basis of the préceding analyses, numerical

calculations are carried out for various values of the shearing’

load and the spring stiffness of the elastic foundation. Well-

266/ Vol. 51, JUNE 1984

converged solutions are obtained by taking four terms for
each unknown parameters a,, and b,, in the simply supported
case, and 10 terms in the clamped one.

First, we consider the buckling problem of infinite strips
under shearing load on the elastic foundation. The buckling
load factor A, and the corresponding wavelength factor o,
are determined for various values of the spring factor k and
illustrated in Fig. 2. In this case, exact solutions can be ob-
tained easily by putting w,,.,=p=0 in equation (7) and in-
tegrating this equation directly. The difference between the
present approximate and exact solutions was 0.2 percent at
the most. Excellent agreement was obtained. It can be seen
from Fig. 2 that the buckling load increases considerably and
the corresponding wavelength factors increase slightly with
the spring stiffness of the foundation and the restriction on
the edge rotation of the plate.

Next, the effect of the elastic foundation on the diveregence
velocity of the plate without shearing load (A=0) is examined
with the results shown in Fig. 3. It can be seen from this figure
that the divergence velocity V,, increases considerably and
the corresponding wavelength factor oy, increases slightly
with the spring stiffness & of the foundation and the
restriction on the edge rotation of the plate. The present
results V., and a.,, for the simply supported plate without
the elastic foundation (k=0) agree precisely with those ob-
tained by Dowell [2]. While the flutter velocity and the
corresponding wavelength were determined for the simply
supported plate without the elastic foundation and the
shearing load, and confirmed to agree well with those ob-
tained by Dowell [2], and Weaver and Unny [5], these result
will not be presented here.

Furthermore, the effect of the shearing load on the
divergence velocity of the plate without the elastic foundation
(k=0) is examined with the results shown in Fig. 4. In this
figure, A, is the buckling shearing load of the plate without
the elastic foundation for each case (c) and (s). It can be seen
from Fig. 4 that the shearing load reduces the divergence
velocity V., and slightly increases the divergence wavelength
factor oy, . This tendency is somewhat different from the
result for the plate with finite length and infinite width ex-
posed to an incompressible inviscid fluid flowing in the
direction of the finite length. That is, a shearing load smaller
than one-half of the buckling load does not affect the
divergence instability in the latter case [24].

Finally, the arithmetic effects of the elastic foundation and
the shearing load on the divergence velocity V., and the
corresponding wavelength factor o, are examined with the
results shown in Fig. 5. In this figure, Ay is the buckling
shearing load for each case, and V., and o, are the
divergence velocity and the corresponding wavelength factors
of the plate without shearing load (A=0) for each case. The
following observation can be made from this normalized
figure. The relation between the divergence velocity and the
shearing load for the simply supported plate almost agrees
with that for the clamped one, irrespective of the spring
stiffness of the elastic foundation. The relation between the
divergence wavelength and the shearing load slightly changes
as the shearing load increases and the spring stiffness varies.

The effects of the shearing load, the elastic foundation, and
the boundary condition on the divergence mode are examined
also. Typical results for the plate without the elastic foun-
dation (k=0) are shown in Figs. 6 and 7, with the contour
lines with the maximum amplitude of the deflection w taken
as unity. Since the effect of the elastic foundation on the
general feature of the divergence mode is very small, its
results are omitted. It can be seen that, with the application of
the shearing load, the nodal lines are changed obliquely in the
loading direction and this divergence mode almost agrees with
the buckling one. The divergence wavelength o slightly
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decreases with the shearing load. The difference in the
boundary condition changes the divergence wavelength and
the contour lines near both the edges of the plate.

Conclusion

The influences of the shearing load and the elastic foun-
dation on the hydroelastic instability of infinite strips are
examined on the basis of the small deflection plate theory and
the classical linearized potential flow theory. The main results
obtained here may be summarized as follows.

Journal of Applied Mechanics

(1) The divergence velocity and the corresponding
wavelength factors of the strip without shearing load increase
with the spring stiffness of the elastic foundation.

(2) Increase in the shearing load reduces the divergence
velocity and slightly increases the divergence wavelength
factor of the strip without the elastic foundation.

(3) The divergence velocity, the buckling load, and the
corresponding wavelength factors increase due to the
restriction of the edge rotation of the strip.

(4) When the divergence velocity and the corresponding
wavelength of the strip under shearing load on the elastic
foundation are normalized by those of the strip without
shearing load, and the shearing load by the buckling load for
each case, the relation between the shearing load and the
divergence velocity of the strip on the elastic foundation is
shown in a single curve, irrespective of the boundary con-
dition of the strip.

{5) The divergence mode of the strip under shearing load
almost agrees with the buckling mode.
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On the Propagation of Bulges and

E. Chater

J. W. Hutchinson
Mem. ASME

Buckles'

Two examples illustrate the propagation of instability modes under quasi-static,
steady-state conditions. The first is the inflation of a long cylindrical party balloon

in which a bulge propagates down the length of the balloon. The second is the

Division of Applied Sciences,
Harvard University,
Cambridge, Mass. 02138

collapse of a long pipe under external pressure as a result of buckle propagation. In
each example, there is a substantial barrier to the initiation of the instability mode.
Once initiated, however, the mode- will not arrest if the pressure is in excess of the

quasi-static, steady-state propagation pressure. It is this critical pressure that is
determined in this paper for each of the two examples.

1 Introduction

While not a problem of great technological importance, the
inflation of a common cylindrical party balloon provides a
good illustration of the phenomenon of the propagation of an
instability. If one were to record the pressure in the balloon as
a function of its volume during the inflation process, one
would obtain a record such as that shown in Fig. 1. A bulge
first starts to form when the peak pressure is attained. It
forms and localizes at some section with an initial weakness or
at one of the ends of the balloon due to local nonuniformity.
With continued inflation, the pressure falls to a constant level
as the bulge slowly propagates along the balloon. During the
steady-state portion of the inflation process the radii of the
bulged and unbulged sections do not change, as depicted in
Fig. 1. The transition front between these two sections simply
propagates, or translates, into the unbulged section. This is a
quasi-static process in that air mass (essentially volume), and
not pressure, is prescribed to increase at a slow rate. A
photograph of a partially inflated cylindrical balloon in the
steady-state phase of the inflation process is shown in Fig. 2.
Our analysis will focus on the critical pressure p* associated
with quasi-static, steady-state bulge propagation and on the
states on either side of the transition.

The balloon problem is analogous in several respects to the
second problem we will consider, which is the collapse of a
long cylindrical shell, or pipe, due to the propagation of a
buckle along its length. This problem is of some importance in
connection with the collapse of undersea pipelines. We ad-
dress the problem of the external pressure p* required to
propagate a buckle down the pipe under steady, quasi-static
conditions. This critical pressure is especially significant since
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at any pressure below p*, buckles cannot propagate, while at
any prescribed pressure above p*, the buckle once initiated
will run dynamically, collapsing the entire length of pipe.

2 Steady-State Bulge Propagation Along a Cylindrical
Balloon

To gain a qualitative understanding of the origin of the
initial bulging process and the subsequent quasi-static- bulge
propagation along a cylindrical party balloon, one need only
consider the relation of pressure to change of volume for a
cylindrical section of the balloon. Consider purely cylindrical
membrane deformations of a section such that at any pressure
p the shape is always cylindrical with current radius R and
thickness ¢. The circumferential stress is o, = pR/t and the
axial stress is o, = pR/(2f). The qualitative form of the curve
of pressure as a function of volume for a cylindrical section of
balloon that has unit volume in the undeformed state is shown
in Fig. 3. The volume change results from axial as well as
circumferential stretch. It will be assumed that the balloon is
inflated under isothermal conditions, and that the pressure-
volume relation in Fig. 3 for purely cylindrical deformations
corresponds to isothermal deformation of the balloon rubber.
A curve calculated using a constitutive law for an actual
rubber will be displayed later.

The initial bulging is a consequence of the local peak in the
curve of pressure against volume for purely cylindrical
deformations. The qualitative argument for initial bulge
formation parallels that of Considére for necking of metal
bars in tension. One section, which is slightly weaker than the
rest of the balloon, attains the peak first and then bulges
under falling pressure while the remainder of the balloon
“unloads’’ without bulging. The bulge has localized in the
manner described in general terms by Tvergaard and
Needleman [1]. However, unlike tensile necking in common
metals and many other problems involving localized in-
stability modes, the bulge starts to spread as inflation is
continued. Spreading, or propagation, is associated with the
upturn in the curve of pressure versus volume for the cylin-
drical section. The increasing resistance of a bulged section to
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further volume expansion terminates the localization process
and forces the bulge to propagate laterally into the neigh-
boring section.

Condition for Steady-State Propagation. As discussed in
the Introduction and as depicted in Fig: 1, the inflation
process soon reaches a steady state in which the pressure is
constant and the radii of the bulged and unbulged sections do
not change. The transition front between these two sections
attains a fixed shape which simply translates along the
balloon engulfing the unbulged section. We will be concerned
with steady-state inflation under a sufficiently slow rate of air
injection such that inertial effects are negligible. This is quasi-
static bulge propagation in which the advance of the tran-
sition front is controlled by the rate of air injection.
Depending on the properties of the balloon material and on its
length, the initial bulging process may occur dynamically,
under a prescribed mass of air, with the bulging section
growing at the expense of the remainder of the balloon.

The equation determining the quasi-static propagation
pressure p* under steady-state conditions follows immediately
from the energy balance requirement that the work done by p*
must equal the change of strain energy stored in the balloon in
any advance of the transition front.

Let ¥V, and V', denote the volumes of cylindrical sections,
each with unit undeformed volume, associated with states' U
and D far ahead of and far behind, respectively, the tran-
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Inflation of a cylindrical party balloon

D

VoV

Fig. 3 p(V) for purely cylindrical deformation of a cylindrical segment
of unit initial volume. Quasi-static, steady-state propagation condition
requires R4 =Ra.

sition. Because the shape of the transition is fixed, the change
in volume of the balloon when the transition front shifts
forward to engulf a new section that has unit undeformed
volume is precisely ¥, —V,, and the work done by the
pressure is p*(V, — V). This work of the pressure is equal to
the work, AW, done on a section of unit undeformed volume
as it passes from state U to state D through the transition, i.e.,

p*(Vp—Vy)=aW )

Now, for a rubberlike material for which a strain energy
function is assumed to exist (under the assumed isothermal
conditions), AW is independent of the details of the defor-
mation history in the transition and depends only on the end
states D and U. In particular, we may calculate AW using
purely cylindrical deformations to connect states D and U.
Doing so, we note that

YD
p(Ndv @

=]
Yu

where p(V) denotes the relation of pressure to volume for
purely cylindrical deformations of a section of unit un-
deformed volume, such as that depicted in Fig. 3. Thus, from
(1) and (2), the equation for the pressure p* for quasi-static,
steady-state bulge propagation is
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Fig. 4 p(V) for purely cylindrical deformation of a cylindrical segment
of rubber material specified by (4)-(6). (The logarithmic scale distorts

the areas of the two lobes.)
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Equation (3) has the simple graphical solution indicated in
Fig. 3. By (3), the equality of the rectangular area p*(Vp —
V) with the area under the curve p (V) between Vi, and Vp, is
equivalent to the condition that the areas of the two lobes, ®,
and ®,, be equal. In the literature of phase transitions, this
graphical solution involving conjugate thermodynamical
variables is known as Maxwell’s condition for two coexisting
phases [2]. For the balloon, equation (3) is the condition that a
transition between bulged and unbulged sections exist whether
the transition is stationary or whether it is propagating quasi-
statically under inflation or deflation.

The quasi-static propagation pressure p* is less than the
local peak pressure p,,, a cylindrical segment can support by
about a factor of two, which will be shown in the following
example. In other words, it takes a substantially larger
pressure to initiate a bulge than to propagate it, as depicted in
Fig. 1, and as experienced by anyone familiar with blowing up
party balloons. The relevance of the Maxwell construction to
other instability propagation problems has been noted in [3,
4]. Characteristic of the general class of phenomena is a
substantial barrier to the initiation of the instability mode.
Once initiated, the mode encounters less resistance and
spreads at reduced load.

Predictions for a Specific Rubber Material. Ogden [5]
proposed a strain energy density function for incompressible,
isotropic rubberlike materials in the form

3
&= ), wl(ay) @)
i=1
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where
Hay=a T\f+N¢+ 7§ —3) 5)

and where the \; are the three stretches. To fit Treloar’s
isothermal data for rubber, Ogden proposed

o;=13, =50, a;=-2.0

with (6)

p2=2.01X103u; and p3=—1.59x 102y,

where p, is a ground state modulus which will not have to be
specified here. The curve of nondimensional p as a function
of V for purely cylindrical deformations of a cylindrical
segment of this material is shown in Fig. 4. Here Ry, ¢;, and
V, denote the values of the radius, thickness, and volume of
the undeformed cylindrical segment. The local peak pressure
is

Pmax =0.504p,10/Ry M
The Maxwell condition (3) for p* and states U and D gives

p*=0.255u,ty/R, ®)
and
A =1.006, N =1.125, V,=1.273V,
NP =4.484, NP =6.507, V,=189.8V, ©

where the one-direction is parallel to the cylindrical axis of the
balloon and the two-direction is along its circumference.
(Note that a logarithmic scale is used for the abscissa in Fig. 4
so that the two lobes formed by the Maxwell line do not have
equal areas in that plot.) The steady-state inflation pressure is
almost exactly one half p,,,. The measured volume expansion
of the balloon of Fig. 2 in state D is about Vp, =130V,, which
is somewhat less than the prediction (9) for a balloon of
Treloar’s rubber characterized by (4).
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Fig.5 Section of one of Kyriakides’ specimens showing the transition
between the buckled and unbuckled regions of the pipe.

3 Buckle Propagation Along a Pipe Subject to Ex-
ternal Pressure

We now direct attention to the problem for the smallest
pressure at which a buckle, once initiated, will propagate the
entire length of a cylindrical shell or pipe. Palmer and Martin
[6] have given one of the early accounts of this phenomenon
as related to the collapse of undersea pipelines, and Mesloh,
Johns, and Sorenson [7] conducted the first systematic ex-
perimental study of the problem using both small and full-
scale specimens. Kyriakides [8] and Kyriakides and Babcock
[9, 10] have carried out the most extensive theoretical and
experimental study of a number of aspects of buckle
propagation and arrest on externally pressurized pipes. The
approach we discuss in the following makes close contact with
the work of Kyriakides and Babcock and, in particular, we
will compare our theoretical predictions for the smallest
propagation pressure to some of their experimental results.

A photograph of one of Kyriakides’ test specimens is shown
in Fig. 5. The section of pipe shown was cut from a much
longer pipe. It displays the three regions of interest: the
collapsed region, the unbuckled region, and the transition. In
conducting the test, a substantial dent was introduced near
one end of the long pipe. The pipe was then subjected to
external pressure in an apparatus consisting of an external
shell surrounding the pipe. Air or water was pumped at a
given rate into the cavity between the pipe and the outer shell.
Under quasi-static propagation of interest here, the buckle
spreads at a rate that is controlled by the (slow) rate of in-
jection of the pressurizing medium. After a brief transient,
the propagating buckle settles down to a steady-state con-
dition in which the transition moves down the pipe under
constant pressure p* leaving a plastically collapsed pipe
behind it.

Buckling and Post-Buckling Behavior of a Ring Under
Plane Strain Deformations. The classical elastic buckling
pressure of an infinitely long cylndrical shell of radius R and
thickness ¢ due to plane strain ring buckling is

2721Vol. 51, JUNE 1984

elastic buckling

/plus'nc yielding O

DA, AAp DA

Fig. 6 Buckling and post-buckling behavior of a ring undergoing plane
strain deformation. Quasi-static propagation pressure p* is given by
the condition ®4 =®, for a pipe of material characterized by defor-
mation theory.

E N3
Pe= 20— (R) (19)
where E is Young’s modulus and » is Poisson’s ratio. The
associated hoop stress in the shell at buckling is o, = —~p R/t
and the axial stress is ¢,./2. The pipes that have been tested
have ratios of radius to thickness in the range from about
15-50, roughly corresponding to the range of interest for
undersea pipelines. In this range, the materials of the test
specimens, and of the pipelines themselves, have sufficiently
high-yield stresses such that any perfect pipe would begin to
buckle elastically, That is, the stress state (0., 0./2) falls
within the initial yield surface of the pipe material. In the
present study, we will also confine attention to the range of
parameters such that the classical buckling stress of the
perfect pipe is within the elastic limit.

Kyriakides and Babcock [8-10] and Kyriakides and Arikan
[11] have emphasized the relevance of the post-buckling
behavior of a circular ring to the understanding of the buckle
propagation problem, and the ring behavior is central to our
approach as well. A schematic curve of pressure, p, as a
function of reduction in cross-sectional area, AA, is shown in
Fig. 6 for a perfect, infinitely long cylindrical shell un-
dergoing ring buckling. This is a plane-strain ring mode in
that the deformation is independent of the axial coordinate
and the axial component of strain associated with bending is
Zero.

Buckling starts when the pressure attains p., as already
described. Ovalization proceeds under a very slight rise in
pressure until plastic yielding starts at the regions of highest
curvature change. Once yielding starts, the pressure carrying
capacity falls precipitously. As ovalization progresses, most
of the deformation becomes confined to four ‘‘hinges’’ at the
quarter points of the ring and the pressure falls more slowly.
Then, when the area reduction has reached about 75 percent
of the original cross-sectional area, touching of two opposite
quarter points ‘occurs, as depicted in Fig. 6. Touching braces
the ring and immediately results in a substantial stiffening so
that the pressure again increases very rapidly with relatively
little additional area reduction [11].

Touching and the attendant rise in pressure is crucial to the
work balance relation, and therefore some further
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background to its occurrence is now given. In the original
tests of Kyriakides and Babcock the importance of touching,
per se, was not obvious and no effort was made to ascertain
whether or not it occurred in the limit of quasi-static
propagation. In the unloaded state the opposite walls of the
collapsed section are definitely not in contact, but no con-
clusion can be drawn from this observation since elastic
spring back always occurs. We are grateful to Kyriakides for
conducting further tests on two additional specimens under
quasi-static test conditions. In these tests he determined
unambiguously that touching does occur in the collapsed
section of the pipe behind the transition (private com-
munication).

Deformation Theory Analysis of Quasi-Static, Steady-State
Buckle Propagation. A second crucial aspect in our approach
is the idealized material model we adopt. We characterize the
material by the deformation theory of plasticity, which is a
small-strain, nonlinearly elastic constitutive relation. In the
steady-state buckle propagation problem elastic unloading is
not an important feature. Almost every material point in the
pipe experiences a monotonic plastic loading history as the
transition fronts sweeps by it. In the quasi-static propagation
limit, the transition between the collapsed and uncollapsed
sections of the pipe is very gradually occurring over about 10
pipe diameters [8]. To a rough approximation, any short
cylindrical segment of the pipe experiences a deformation
history similar to the ring deformation depicted in Fig. 6. In
addition to circumferential bending associated with the ring
deformation, some axial bending along with in-plane

R

p
2R 102 -
20+
1.61

straining must occur in the transition. In other words,
although the stress history of any material point may involve
monotonic loading, it is not a strictly proportional stressing
history. By invoking deformation theory, we will be
neglecting any path-dependent effects associated with the
nonproportional stressing that occurs in the transition.

Now consider the work balance for steady-state
propagation under quasi-static conditions at pressure p*. By
making the same simple arguments used in the balloon
problem, one arrives at the work balance relation

P(AAp —AAy) =AW (an

Here, AA, and A4, denote area reductions associated with
segments far behind and far ahead of the transition, and AW
is the stress work absorbed by each ring segment of unit length
as it is engulfed by the transition deforming it from state U to
state D. For a pipe of deformation theory material, states D
and U are plane-strain ring solutions, Furthermore, because
of the path independence of deformation theory, AW may be
determined using the ring solution even though each ring
segment departs from the plane-strain ring behavior in the
transition. The stress work difference, AW, is just the work
done on the plane strain ring in deforming it from state U to
state D, i.e.,

AAD
AW:S p(AA)dAA (12)
Ay

where p(AA) denotes the relation of pressure to area
reduction for the ring under plane strain deformations. Thus,
the equation for p* is

(a)

Fig.7(a) R/t=14.3
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Fig.7 Curves of p(aA) for cylindrical segments of two pipes in the test
series. In each case, Y/E =0.0042 and n = 30.

4dp
p*(AAD—AAU>=SMUp<AA>dAA (13)

with the same graphical interpretation as in the balloon
problem, as indicated in Fig. 6.

Comparison With Some Experiments. We have carried out
accurate calculations of p* for some pipes of AL-6061-T6 for
which Kyriakides [8] reported quasi-static buckle propagation
pressures. The yield stresses of the pipes in the test series
ranged from ¥=280 to 370 MPa. We selected eight pipes for
which the uniaxial stress-strain curves were available with Y
being in the range from 286 to 296 MPa. The uniaxial curves
given in [8] were closely approximated by the formula

g Y a\"
=—+(o.005——)(~>
““E E/\Y

where E=6.9x10*MPa, with Y/E=0.0042 and n=30 or
with Y/E=0.0043 and n=28.

The pipes varied in radius to thickness from 14.3-47.4 and,
as already mentioned, a perfect version of each would begin
buckling in the elastic range. Some of the details of the
calculation of the relation p(AA) for the plane-strain ring
problem are described in the Appendix. Two examples are
shown in Fig. 7 for the pipes in the series with the largest and
smallest values of R/¢. The elastic contraction of the ring
prior to buckling is so small that almost no reduction of area
shows up in Fig. 7 before the peak is attained. To facilitate the
numerical calculation of p(AA), a very small initial im-
perfection was introduced in the form of an initial ovalization
of the ring amounting to an additional radius difference of
0.005 times the ring thickness. For this reason, the peak value

(14
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Fig. 8 Comparison of theoretical prediction for p* (solid line) with
experimental results of [8] (solid points)
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Table 1

(experimental)

(theoretical)

R(mm) t(mm) R/t p*(MPa) p*(MPa) Y(MPa)
12.7 0.889 14.3 1.68 1.294 290
19.1 1.245 15.3 1.55 1.15% 297
14.3 0.914 15.6 1.23 1.11% 297
12.7 0.509 25.0 0.441 0.431¢ 290
19.1 0.737 25.9 0.395 0.3944 290
17.5 0.508 34.4 0.227 0.207 297
25.4 0.559 45.5 0.121 0.110° 293
34.9 0.737 47.4 0.103 0.101¢ 286

2Calculated with Y/E =0.0042 and n=30
bCalculated with Y/E=0.0043 and n =28

er

P
pc 5

1 i j

|
) 10 20

30 40
R/t

Fig.9 p*/p. forvarious initial yield strains ¢y forn =10,

of p does not quite attain p.. The error in p* associated with
the introduction of the imperfection is very small, as can
readily be estimated.

Touching occurs at A4 =0.757R?. We did not compute
p(AA) beyond touching. For simplicity, we took the relation
to have a vertical slope once touching occurred. This neglects
a small contribution to the area of the lobe below the Maxwell
line. The theoretical prediction for p* determined from (13) is
shown in each of the plots of Fig. 7 along with the ex-
perimental value.

The comparison between theory and experimental data for
the eight pipes is graphed in Fig. 8. The theoretical curve in
this figure was determined using ¥Y/E=0.0042 and n =30, but
essentially identical results are obtained using Y/E=0.0043
and n=28. Numerical data for the eight shells are given in
Table 1. Except for the two pipes with the smallest values of
R/t, the theoretical prediction for p* underestimated the
experimental propagation pressure by no more than 10
percent, and for three of the pipes the prediction is within 2
percent. The theoretical predictions for the two pipes with the
smallest values of R/t underestimate the experimental
propagation pressures by about 25 percent.

The results of a limited parameter study are presented in
Figs. 9 and 10 in the form of curves of p*/p,. versus R/t for
various values of ¢; and #. The uniaxial stress-strain curve in
each case was the Ramberg-Osgood relation

e/eg=0/0oy+3/T)o/a)" (15)

where ¢, =0,/E. The predictions for p* are more sensitive
than one might first suppose to the parameters characterizing
the uniaxial stress-strain curve. For this reason, we have not

Journal of Applied Mechanics

attempted to make further comparisons with additional
experimental results in [8] since detailed uniaxial material
data were not available for the other test specimens. In this
connection, it is almost certainly the uniaxial data associated
with the circumferential direction that is relevant when the
pipe material displays appreciable anisotropy.

It can be noted in Figs. 9 and 10 that the pipes with the
smallest values of R/t have the smallest ratios of p* to p,.
Buckle propagation pressures as low as 1/10 to 1/4 of the
classical ring buckling pressure (10) are seen for pipes with
R/t values in the range from 15-20. Such low buckle
propagation pressures are surprising in light of the fact that
the long cylindrical shell under external pressure is not
normally regarded as very imperfection-sensitive even when
plastic yielding occurs in the post-buckling response. It does
take a substantial dent or blow to initiate a buckle that will
then propagate. A pipe meeting normal tolerances should
have no difficulty supporting pressures that are several times
p* as long as they are below p.. However, if substantial dents
or blows are possible, the pressure must be below p* if it is to
be certain that collapse of a full length of pipe will not occur.
The spreading of a buckle due to an initial imperfection is
studied in more detail for a model problem in [3].

Limitations of the Method. There is no question that
deformation theory gives an oversimplified description of the
pipe material for the buckle propagation problem. That the
deformation theory predictions for p* do so well, particularly
for the pipes with the larger values of R/f, is probably a
consequence of the gradual transition so that the departure
from plane-strain ring behavior is not too marked. In every
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Fig. 10 p*ip, for various strain hardening exponents n for
eg = 0.00225.

case, the deformation theory prediction for p* un-
derestimated the experimental result. This is not surprising
since deformation theory is expected to underestimate the
work absorbed, AW, by each ring segment as it is engulfed by
the transition.

The simple analysis presented here provides the
propagation pressure p* and the states far ahead and behind
the transition but no information about the transition itself.
In the case of the balloon, we have formulated and solved the
axisymmetric membrane problem for the full problem, in-
cluding the transition, and this solution will be reported
elsewhere, along with some results related to the energy
associated with the transition. The corresponding problem for
the pipe is much harder even when deformation theory is
invoked.

We have made some attempts to base the calculation of p*
on an incremental theory of plasticity, but only with limited
success at this stage. When deformation theory is abandoned
and material path dependence is accounted for, the behavior
in the transition must be analyzed. The appropriate shell
problem is incomparably more difficult than the ring problem
on which the deformation theory analysis is based. Never-
theless, at some level of approximation, it will probably be
necessary to incorporate the effect of the material path
dependence to improve on the present method for estimating
p*. Furthermore, if it is desired to predict the relation between
the steady-state velocity of propagation at pressures above p*,
it will almost certainly be necessary to improve on the
material model. As reported in [8], the transition is sharper in
the dynamic problem than it is in the quasi-static one, and this
makes it more likely that path-dependent effects are im-
portant in the transition.
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APPENDIX
Numerical Scheme for Ring Analysis

The method used to generate the relation p(AA) shown in
Fig. 7 is similar in many respects to the method employed in
[10]. In the present study, for convenience, we did not enforce
inextensionality, although the extensionality is not expected to
have much effect on p*. Furthermore, we constrained the ring
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Fig. 11

Sign conventions for the ring analysis

deformations to be plane strain with zero axial component of
strain, consistent with the fact that the ring segment is part of
a long cylindrical shell.

The equilibrium equations for a ring in the deformed state
are

dM/ds+S=0
dS/ds—«kF=p
dF/ds+«kS=0

where M, S, and F are the moment, resultant transverse shear
stress, and resultant stretching stress with the sign conventions
shown in Fig. 11. The curvature in the current state is x(s)
and the distance along the ring midsurface is s. With w and v
as the displacement increments normal and tangent,
respectively, to the current middle surface, the increments of
rotation, strain and curvature are

(16)

d=dw/ds— kb
é=do/ds+ kW an
k=d¢/ds

With s;; as the stress deviator, o, = (3s;5;/2)"/? as the
effective stress, and E,(o,) as the secant modulus of the

Journal of Applied Mechanics

uniaxial stress-strain curve, the deformation theory relation
for multiaxial stress states is

1+ 1-2» 5 3 ( 1 1 )

eU_ E Sij+ E JPP U+2 Es E S'Y
Let ¢,, be the hoop strain and ¢,; be the axial component of
strain, with o3; as the stress component in the direction
normal to the middie surface. Under the conditions that
033 =0 and ¢;; =0, one can derive an incremental expression
from (18) relating é=¢y, to =06y, in the form 6=F, ¢, where
E, is the plane-strain tangential modulus which depends on
the stress at the particular point in the ring. The incremental
form of the constitutive relation for the ring is

F=Lié+L,k
M=L,é+Lyk

(18)

(19)
Here,
vz
L,'=S E,Z"ldz
—1/2

with z as the coordinate measured from the ring middle
surface.

After writing the equilibrium equations (16) in incremental
form, we obtained four first-order differential equations with
S, ¢, ¢ and k as dependent variables. This is a convenient
choice of variables since S and ¢ vanish at the quarter sym-
metry points. At each stage of the deformation history, the
system of four first-order equations was integrated
numerically. Then, the displacement increments were ob-
tained by integrating the first two equations of (17) subject to
?=0 at quarter symmetry points. The increment in area
reduction is — {wds. An accurate evaluation of the integral on
the right-hand side of (13) was obtained by fitting the
discretized results for p (AA) using cubic splines.
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Flat-Lying Heavy Sheet

An elastic sheet with non-negligible density and finite length lies horizontally on the
ground. The ends are clamped and subjected to compressive forces. Depending on
the force, the sheet may be regarded as ““long’’ or “‘short’’ with different charac-
teristics. The critical buckling load, redefined as the force below which the sheet will
always return to the horizontal state under any finite disturbance, is higher than the

Euler buckling load of a weightless sheet. When deflections are small and finite the
sheet is stable for given end displacement, but is unstable for given force. Ap-
proximate analytic solutions compare well with the results of exact numerical in-

tegration.

Introduction

Figure 1 shows an originally horizontal elastic sheet of non-
negligible density. The sheet is buckled by bringing the
clamped ends closer together. This problem is important in
the handling of thin materials such as paper, textiles, sheet
metal, and plastics. It is also important in the vertical
buckling of railroad tracks [1]. Theoretically, the buckling of
such a flat-ying heavy sheet raises both analytical and
conceptual difficulties, some of which will be addressed in this
paper.

Early works on the stability of an infinite flat-lying sheet
may be traced back to the 1930s [2]. Using linear beam theory,
Martinet [3] found the relationship

F'=20.18 EI/I'? (1)

Here F’ is the axial compressive force (per unit length), ET is
the flexural rigidity (£ = Young’s modulus/(1 — (Poisson
ratio)?), I = (thickness)?/12), and /' is the half length of the
lifted section. The same relationship was later rederived by
Nusayr and Paslay [4].

The nonlinear post-buckling state was first attempted by
Kerr [5] who modeled the continuous sheet by two rigid
connected segments. Exact numerical solution of the con-
tinuous sheet was obtained by Wang [6]. Among other results,
Wang showed that the horizontal force-displacement curve of
the infinite sheet has negative slope, i.e., less force is required
to maintain a larger displacement. Thus given a constant
compressive force the initially horizontal sheet may not
buckle at all, but when adequately perturbed the sheet will
catastrophically collapse completely. This result is opposite to
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the Euler beam where the force-displacement curve has
positive slope, with stable post-buckling equilibrium states.

Suppose we consider a flat-lying heavy sheet of finite
length. As length decreases, the results of reference [6] should
gradually approach the Euler beam, since stiffness becomes
increasingly important. How this transition occurs is the aim
of this paper.

Formulation

We will consider symmetric buckling shown in Fig. 1. A
cartesian coordinate system (x’,y’) is attached at the mid-
point. Let s’ be the arc length from the origin and 8 be the
local angle of inclination. The sheet has a total length of 2L.
A local moment balance gives

F'ds’sin 0+m+dm=ps’'ds’cos 6+m )
Here m is the local moment and p is the weight per arc length.

If the sheet is thin enough, the local moment is proportional
to the local curvature:
db

=F]— 3
" ds’ @

77777777777

The coordinate system

77777777777

Fig. 1
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We nondimensionalize all lengths by L, the force by EI/L2,
and drop primes. Equations (2) and (3) yield

a0 =Bs cos 0—F sin 0 4
sz - S sin 4)
where B = pL3/EI is a nondimensional parameter

representing the relative importance of density to flexural

rigidity.
Now define the /ong sheet as one that, after buckling, has
nonzero segments in contact with the ground (s’ = +/’ tos’

= =L in Fig. 1). In this case the buckled region is in-
dependent of the length L and the sheet may be regarded as of
infinite length, a case studied in reference [6]. We define the
short sheet as one that has only the end points (s’ = L) in
contact with the ground. We expect, as the two end points are
brought closer together, the character of the sheet changes
from that of the long sheet to the short sheet.

Due to symmetry, we consider only positive s. The
boundary condition at zero is

H0)=0
In addition, for the long sheet

3

do
0() = — (1) =0 ©)

and for the short sheet
6(1)=0 ©)

After 6(s) is obtained, the configuration of the lifted section
can be determined by

and the condition

tanVF [=VF [ (12)
The smallest root is
VF [=4.4934095 13)
Thus the long sheet (/ < 1) is defined by
F>20.19073 (14

otherwise the sheet is considered a short sheet.
For large B and/or large deflections, direct numerical
integration of equation (4) is necessary. Let

(8,%,y) =B~"(r,u,v) (15)
Equations (4), (5), (8), and (9) become
2
—— =rcos 0—Hsinf, 60)=0 (16)
dr
di d
D cos 0, 2 —sin6, u(0)=v0)=0 a7
dr dr

where H = FB~?7. For given H we guess df/dr(0) and in-
tegrate equations (16) and (17) by the fifth order Runge-
Kutta-Fehlberg algorithm until 8 is zero again, say at r = r*.
The value of d6/dr(0) is adjusted until d6/dr(r*) = 0. Then
for any B > (r*)?

d
1=rp-15, F=rp, 0= 2 g (18)
ds dr

8=[r*—u(r)IB~13, b=v(r")B' 19
Here & is the lateral displacement of one end and b is the

dx d
e cos 0, @ sin 0 (8) maximum height. Figure 2 shows the results. These curves are
o ds consistent with reference [6] which uses different normalized
x(0)=y(0)=0 (9) parameters.
The Long Sheet The Stability and Perturbation Analysis of the Short
For small B and small # equation (4) becomes Sheet
d*o When the length is short, we expect flexural rigidity to be a
ds? =Bs~F (10)  4ominant factor. For stability, we assume small § and even
. . . smaller B. Let
Using the boundary conditions equations (5) and (6), we 3

obtain B=¢ <<l 20)
p B ( 1sim/Fs> . O=eby+60,+. .. [¢3))
=F T GwEl (1D F=Fy+&F +. .. 2)

10k 410

r/2 o

osl- s

280)
B virt)
P‘U(r')
% 5 10 s 20

CH

Fig.2 Characteristics of the long lying sheet
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r S
b F
o5 Ref[?l\'
o long
Eqs(18,19)
i o
T
L m
P
[e) L H |
8 b 12 16 20 24
F

Fig. 3 Maximum height b versus compressive force F. Dotted line
indicates the boundary of short and long lying sheets. Dashed lines are
approximations, equations (34) and (38).

The constant C, may be set equal to zero without loss of
generality since it can be absorbed into the zeroth-order
solutions as follows. Let C = C’' — ¢2C, in equations (21)
and (22) and we find equations (26)-(28) are invariant if C’ =
C and C; = 0. If we vary C; directly the effect will be felt
inthe 0(¢*) term of F.

For the critical buckling load (as defined later), we seck the
minimum of equation (28). Set dF,/dC = 0 to obtain C =
2/=. Then

3
Fer Fo=Fy+e*F +.. )pn=7"+ > B3 +0(B*3) 29

The buckled configuration can be obtained from equations
(8) and (9) and the perturbation

5F X=Xxo+elx;+...y=eygt. .. (30)
We find
de dyo dxl 902
=1, Z2=¢, —=-_— 31
ds ds o ds 2 3D

The solution is

C c?/1
OO % '2 é "4 15 X0 =5, y0=7(1—cos TSs), X = vy (2—7rsin 21rs—s>
8 (32)
Fig.4 The critical buckling load. Dashed line is equation (29). The lateral displacement of one end is
Cz
Equation (4) becomes d=1-x(1)= Y B*? +0(B*?) (33)
‘;2 .9020 +Fo, =0 23) The maximum vertical displacement is
2C
) s b=y(1)= == B3 +0(B) (34)
4 by —s+ 9 _p g 4) i
ds? o= 6 1o The normalized moment is
d ditic ti 5) and (7) gi di C? 1
The boundary conditions equations (5) and ( )glve _‘?_ — Cr cos msBY3 + <7r cos Ims+
00(0)=6o(1)=0, 6,(0)=6,(1)=0 (25) ds 64 T
The zeroth-order solution is 1 s . .
f0=Csin 15, Fy=n° 26) + Fcos T — —7r—31n 1rs)B+O(B ) (35)
where C is an arbitrary constant and F, is the Euler buckling Thus
load. The solution to the first-order equation, satisfying the 4o 7C> 2
boundary conditions, is — (0)=C#B3 + (——~ + = ) B+0(B*?)  (36)
c s ds 64 T
6, =C, sin s+ sin 3ms+ — (1 +cos ws) @2n do 7C3
192 i —=(1)= —CxB"> — —_B+0(B*?) @7
and 7!'2 CZ 2 . ds 64
F, = +— 28
! 8 xC (28) The amplitude C is related to force F by
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05k

long
. Eqgs(18,19)

8 12 16 20 24
F
Fig. 5 Lateral displacement 5 as a function of F. Dashed lines are
approximations, equations (33) and (38).
6~
a4+ Refl7]
de
E(O)
Al o short long
& £q(18)
o]
2k
de
E(‘l)
-4
-6
sl L
8 8 24
Fig. 6 The normalized moments ats = 0 and s = 1. Dashed lines are
approximations, equations (36)-(38).
) T2 2 - - bifurcation exists. Let us study the curve B = 2, The segment
F=x*+ ( 8 + '7';5)5 +0(B*7) (38) 0 the right of the dotted line, PQ, represents the long sheet

Post-Buckling Characteristics of the Short Sheet

Numerical integration is used for large deflections. The
method is simialr to that of the long sheet, except shooting is
not necessary. Pick any d#/dr(0) and integrate equations (16)
and (17) till 8(r*) = 0, then

B=(r*)}, F=H(*)?, &6=1-{u(r*)/r*] 39
® * a9 — gk __‘_1_0_ _‘iﬂ
b=v(ry/r, E(O)"r ar ), pa I
* de *
=t (r*) (40

Figure 3 shows the maximum height b as a function of the
horizontal force F for various constant B. The curve B = 0 is
obtained from the Euler beam data in reference [7] or from
more accurate data in reference [8]. Bifurcation occurs at F' =
w? which is the critical buckling load. For B # 0 no such

Journal of Applied Mechanics

defined previously. The segment QR is the part of the short
sheet that has negative slope. The segment RS has positive
slope and tends to the B = 0 curve, indicating increased effect
of flexural rigidity. As discussed before, force-displacement
curves with negative slope are unstable to given force, but are
stable to given displacement. Suppose a compressive force of
F = 14 is applied. The sheet may not buckle at all. But when
perturbed, say b > 0.2, the sheet will collapse, passing
through the state at R and settle on the stable point at F = 14,
b = 0.76.

Now we will redefine the critical buckling force as the force
below which the sheet will always return to the trivial state,
under any disturbance, finite or infinitesimal. This stability
definition was inferred by Zajac [9] and Kerr [5] on related
problems and differs slightly from the classical infinitesimal
stability advocated in reference [7]. Under this new definition,
the critical buckling force for B = 2 is at R, F, = 12.1.
Notice that the perturbation needed (b = 0.47) is quite large
at this critical buckling force. '

JUNE 1984, Vol. 517281
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Fig. 7_ Sheet configurations for B = 2. (D: F = 31.75; @): F = 12.7;

and (3):F = 12.7.

If we eliminate C from equations (34) and (38) we obtain
the small B approximations shown as dashed lines in Fig. 3. It
seems the validity of our perturbation series can be extended
to B = 0(1) provided b remains small. The critical buckling
load F, as a function of B is shown in Fig. 4. Our ap-
proximate formula, equation (29) is slightly higher than the
exact numerical result.

Figure 5 depicts the e¢nd displacement § as a function of F.
The transition from the long sheet to the Euler beam is clearly
shown. Figure 6 shows that the moment at s = 0, which is also
the maximum moment, has similar behavior. The moment at
the end s = 1 becomes zero for the long sheet (F > 20.19073).

Figure 7 shows the computed configurations for a sheet of
given length (B = 2). Curve (1) at F = 31.75, 6 = 0.00084
belongs to the long sheet category. Curves and @ atF =
12.7, 6 = 0.046, and & = 0.275 have short sheet charac-
teristics. Curves and (2) are unstable to given constant F
but are stable to given displacement §. For example, at fixed F
= 12.7 curve would readily snap into curve @ which is
stable.

Discussion

The behavior of the flat-lying sheet with density (B # 0) is
quite different from the Euler beam which has zero density (B
= 0). The Euler beam has a conventional pitch fork bifur-
cation, with the trivial branch unstable to infinitesimal
disturbances. The heavy sheet has only one branch (e.g.,
PQRS in Fig. 3) which does not intersect the trivial axis (zero
is not a solution to equation (4)). For given F the heavy sheet
is stable to infinitesimal disturbances but may be unstable to
finite disturbances. Therefore we have extended the definition
of the critical buckling load to include these situations.

282/Vol.51, JUNE 1984

Our results compare well with those of Kerr [5], who
modeled the heavy sheet by two rigid, elastically connected
bars. The perturbation to the short sheet was attempted by
Vielsack [10], who assumed a center region dominated by
rigidity and a boundary region near to ends where density is
important. This assumption is incorrect because rigidity
effects are proportional to local curvature and the boundary
region shows as large a curvature as the central region at
critical buckling (Figs. 6 and 7). Consequently his result for F
does not agree with our equation (38), which is the correct
perturbation solution.
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Introduction

With the advent of the modern computer, it is now possible
to study a broad range of practical problems involving
plasticity which do not lend themselves to analytical solution.
This development has kindled a renewed interest in the
problem of modeling nonlinear materials. A number of
researchers have devised ways to narrow the gulf between the
bilinear stress-strain diagrams of conventional plasticity and
the gradually rounded curves characteristic of most real
materials [1-7]. The tendency has been toward more com-
plicated mathematical models with vastly enlarged fields of
material parameters.

In the midst of this rush toward complexity, Krieg and
Krieg [8] voice a word of caution. They note that even the
simplest of the traditional models, the case of perfect
plasticity with a von Mises yield criterion, is usually im-
plemented with considerable error in structural analysis
programs. To be sure, all of the approximate schemes they
test converge upon the exact stress-strain law in the limiting
case of small strain increments, but given the localized
slippage inherent in plasticity theory, it is manifestly difficult
to keep the strain increments uniformly small throughout the
domain. Thus, in the region where slipping is most likely to
occur, the strain increments are apt to be largest and the
accuracy worst.

One way to resolve this difficulty is to base the stress-strain
calculations for each time step directly on the analytical
solution that Krieg and Krieg use as a benchmark for their
study. This approach has not achieved widespread ac-
ceptance, though, nor is it advocated even by Krieg and Krieg.
They describe the exact solution as computationally slow and
intimate that (unlike the approximate schemes they survey) it
cannot readily be extended to the important cases of strain
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time step under conditions of purely kinematic hardening or softening. When
isotropic effects are included, the analysis becomes more difficult, so a perturbation
solution is developed. These solutions are then compared with various algorithms
commonly used in finite element programs in order to assess the trade-offs between
accuracy and computational efficiency.

hardening and strain softening {8, 9]. Now, the first of these
concerns seems legitimate, but the second turns out to be
unfounded, because the exact solution does indeed generalize
to accommodate hardening and softening. Krieg and Krieg
overlook this possibility, evidently because they approach the
issue from the standpoint of traditional stress-space plasticity,
which treats perfect plasticity as a special, singular case.
Within the framework of strain-space plasticity, however, a
single formulation is able to prescribe the types of constitutive
behavior associated with any of the traditional hard-
ening/softening laws [5, 6]. Thus, when one carries over to
strain space the line of argument leading to the Krieg and
Krieg solution, the result is a new solution which applies
equally well to the cases of kinematic strain hardening, perfect
plasticity, and kinematic strain softening. The inclusion of
isotropic effects in the hardening law makes a full analytical
solution impossible, but even here the analysis points the way
to a new class of highly accurate algorithms.

In the first section of this paper, accordingly, there is a
review of the strain-space formulation of plasticity and of its
relationship to the more traditional stress-space version. Then
comes an exposition of the exact solution, to be followed in
turn by brief descriptions of four approximate schemes
current in the literature. The paper closes by offering an
assessment of the trade-offs between computational speed
and accuracy for the various methods.

Strain-Space Plasticity

The basic idea of framing plasticity theory with reference to
strain space rather than stress space has received considerable
attention over the years [1, 5, 6, 11-15]. To clarify the dif-
ference between the two approaches, consider the one-
dimensional case of a bilinear spring. By analogy to
traditional plasticity, one might describe the response by
treating stress as the independent variable, computing the
strain that would have arisen elastically from this stress, and
then adding on the plastic strain ¢”, as indicated in Fig. 1(a).
On the other hand, it is just as reasonable to take strain as the
independent variable, as suggested in Fig. 1(), and obtain the
corresponding stress by subtracting from the elastic stress the
amount of by which stress has been relaxed due to plastic
effects.
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Fig.1 Traditional versus strain-space plasticity
In the fully three-dimensional case, the traditional stress-
space description of plasticity begins by setting

e=ko+e’, 1)

where « denotes the Hookean compliance tensor. Changes in
the plastic strain ¢’ are governed by a yield function, which
may be specified to be of the von Mises type,

d(0,6" A= lo’ —ve’ 12 = p2(A), !
where

f2
A=§ =~ 1éflat.
03

The yield surface, along which & vanishes, turns out in this
case to be a hypersphere in deviatoric stress space whose
initial radius p(0) equals the uniaxial yield stress of the virgin
material. The functional dependence of p upon A allows for
quite general isotropic hardening/softening, while the
parameter v introduces a kind of kinematic hard-
ening/softening which leads to bilinear stress-strain diagrams
when only one yield surface is used.

Invoking the consistency condition in conjunction with the
normality rule leads to a set of expressions governing the
growth of plastic strain. The three distinct cases of strain
hardening, perfect plasticity, and strain softening have to be
dealt with separately. They correspond, respectively, to cases
where [y + (2/3)(dp/dA)] is positive, zero, and negative. For
the strain-hardening case, one arrives ultimately at the
constitutive law [I'+]:

lo' —vef 1 <p(A) always. (o)
When lo’ —vef | =p(A) (8)
and (¢' —ve’) ¢’ >0, 16%]
(6/ —ve") e’ (r'+1
é=kot — (¢’ —~eP). (8)
(2%
Y3 an/"
Otherwise é = kd. (e)

Similar rules apply for the cases of perfect plasticity and
strain softening, denoted [I'0] and [I'~] in reference [5]. It is
important to point out that these three constitutive laws all
differ from one another, particularly with regard to loading
criteria.

Like the one-dimensional example considered at the
beginning of this section, the three-dimensional theory of
plasticity outlined in the foregoing possesses an analog in
strain space. The starting point for strain-space plasticity is to
set

'Here and throughout this paper, a’ denotes the deviatoric part of a, asb s
3 3

used as a shorthand for 3/2 E E ayb
i=1 j=1

and ial = Va-a,

i
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g=ce— ok, 3

where ¢ denotes the Hookean stiffness tensor. The stress
relaxation tensor ¢® remains constant so long as the current
strain lies within the so-called relaxation surface, which is the
locus of strains satisfying the equation

0=F(e,a®,L)=1¢' —eaR 12 —r3 (L), )]

where
)
L=§ 2ok lar.
03

The relaxation function F is obviously patterned after the von
Mises yield function; the parameters ¢ and L allow for analogs
to kinematic and isotropic hardening/softening. A work
principle dictates that the rate of stress relaxation o® extend
outward from the relaxation surface [5, 6]. This fact, together
with the requirement that the relaxation surface follow ¢’
during a period of stress relaxation, leads to the constitutive

law [C]:

le’ —co® | =r(L) always. (a)
When e’ —colft =r(L) »
and (¢’ —ca®)«¢’ >0, (©)

(e’ —coR)ee’ @
o=cé— ————— (&' —ca®). (d)

(c+g ﬂ)r2

3 dL

Otherwise, d=cé (e)

This single set of relations covers the three cases of strain
hardening, perfect plasticity, and strain softening. Indeed, if
one sets

1 1 1 1 )
c—Z-G<2—(—;'y+1) and r(x)—ZGp(ZGx %)

where G is the elastic shear modulus, it is possible to make

o® =2GeP 6)
2Gr=p, Q)

and
2G (e’ —cof) =0 —ve’ ®)

throughout the deformation. Continuing in this vein, one
ultimately establishes that the stress and strain-space for-
mulations produce equivalent constitutive behavior [5, 6].
That is, [C] is equivalent to [I'+] for cases of strain hard-
ening, to [I'0] for perfect plasticity, and to [I'—] for strain
softening. Recently, Casey and Naghdi [16, 17] have ex-
pressed misgivings about this claim, but their remarks suggest
that the disagreement is primarily a matter of semantics [17].

The Exact Solution

Having sketched out the formalism of strain-space
plasticity, it is appropriate now to consider the problem set
forth by Krieg and Krieg [8]. Suppose that over the course of a
time step [¢;, ¢,] a particle’s strain changes from ¢; to ¢,. Given
that the initial stress is o;, the objective is to determine the
final stress state a,. The elastic part of o, is of course easily
found, so the real challenge is to solve for the final value of
stress relaxation, of .

Now ¢® remains constant when the strain state lies inside
the relaxation surface, so the first step toward a solution is to
find the point where the strain trajectory cuts through the
surface. Call this contact strain e, and the corresponding time

“t.. Finding ¢, and ¢, is straightforward since the strain rate é is

assumed to be constant. As noted by Krieg and Krieg, this is a
reasonable simplification since most structural analysis
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Fig.2 Geometric interpretation of the angle y

programs avoid computing higher derivatives of strain in
order to keep storage requirements and computational
complexity down to manageable levels.
The assumption of a constant strain rate also leads to the
identity,
L d[ (e —ca®)eé' ], oReé’
¢ dz[ TE ]“C B ©)

For every ¢ along the trajectory between ¢, and ¢,, equation
(4) holds, so it is possible to define an angle y through the
relation

le

(¢’ —caR)eé’ =r(L) & lcosy (10)

To visualize the significance of equations (9) and (10),
consider a special case where the shear strains all vanish.
Then, as depicted in Fig. 2, ¥ becomes the angle between the
current normal to the relaxation surface and the strain
trajectory. The center of the surface, cg®, is moving, and the
right-hand side of (9) represents the component of its
““velocity’’ in the direction of the strain trajectory. The left-
hand side of (9) breaks down this component into the rate that
segment b is shrinking plus the speed of ¢’. Although this
visualization holds only for a special case, the analysis is in no
way affected by the presence or absence of shear strains.

Invoking (3) in conjunction with equation (d) of the con-
stitutive law [C] and then substituting from (10), one finds
that

lé' lcosy r_
k= (e’ —cot) a1
+ 2 dr r(L)
c+ 22
3dL
This result, in conjunction with (4) leads to
F=qlé& lcos y, (12)
where
2 dr
3dL
n= - (13)
2 dr
3dL

To obtain the differential equation governing the evolution of
¥ (¢), take the inner product of each term in (9) with respect to
¢’, recalling that this strain rate is a constant, and substitute
in from (10). Then, invoking (11), (12), and (13) and sim-
plifying, one arrives at

T

The form of (14) is somewhat awkward for cases where r is
time-dependent. However, if one solves (14) for r, takes the
time derivative, and substitutes in from (12), it is found that

sin y. (14)

Journal of Applied Mechanics

¥=(1+m)cot ¥ ()2
This form admits a first integral; choosing the constant of
integration in conformity with (14), one obtains

le'l
re(siny,)”
where r. and y,. are the radius and’ angle evaluated at the
contact point.
Equation (15) can be integrated analytically for the two
limiting values of 7%, zero, and one. Denoting these solutions

by ¥eo () and ¥ ,,(#), respectively, one finds that the final value
of ,

(siny) 7 (15)

Vr=voo(ts)
B _ lé] v,
=2tan 1Ijexp{— Py (tf—tc)}tan(7>] (16a)
when 7=0;
o Tl
Vr=1y0(ty) =cot [r Siny (¢y—t,) +cot ‘l/c] (16b)

when p=1.

In view of (§) and (13), the expression in (164a) applies to cases
of perfect plasticity and purely kinematic hardening or
softening. The cases covered by (165), on the other hand, are
somewhat more difficult to characterize in terms of the
traditional hardening laws. Strictly speaking, (16b) is ap-
plicable only to a rather obscure mixture of kinematic soft-
ening (y= — 2G) and isotropic hardening. For other values of
v, the constitutive behavior becomes more and more nearly
elastic as  approaches one, and (16b) applies in a limiting
sense in this circumstance. For the special case of purely
isotropic hardening, incidently, the parameter » equals the
ratio of the plastic to the elastic shear stiffness.

For more general combinations of isotropic and kinematic
effects, two options present themselves. One is to integrate
equation (15) numerically, as was done in preparing Figs. 4
and 5. This approach affords great accuracy, but in practice
the computations are prohibitively slow. An alternative is to
expand ¢ (¢) about n=0 and/or 1 and make use of the
corresponding perturbation solutions. The details of this
procedure are outlined in the Appendix.

However one finds y,, the final value of the radius r, can be
obtained by equating the right-hand sides of (14) and (15) at

time ¢=14;:
( sin ¥, )'7
rr=r .
777\ Tsin ¥y

All that remains is to find the final values of stress and stress
relaxation. A careful examination of (3) and equation (d)
from constitutive law [C] reveals that as long as r is smooth,
all time derivatives of ¢ evaluated at time ¢ = ¢, exist and are
linear combinations of (¢, — ce¥) and ¢’. Therefore

e/ —cof =af(e,—cof) +Bé']. (18)

The constants « and 3 are evaluated by invoking (4) and (10)
at time ¢ = #;. Thus,

a7

_ I sin ¢,

r.siny, ’

c (4 (19)
= (ry/a)cos Y, —r, cos ¥,

B le’ | '
Now that af is known from (18), the final value of stress is
given by (3). This concludes the presentation of the exact
solution.
It may be useful, however, to indicate briefly how to recast

this exact solution in the language of stress-space plasticity.
The first step in a stress-space implementation is to multiply
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the deviatoric strain increment by 2G and add it to the old
deviatoric stress to get a trial stress state ¢,. If the trial stress
lies within the yield surface, the final deviatoric stress is
simply the trial stress. Otherwise, one solves for the contact
point, finding ¢/ and ¢,. The contact value of ¢, in view of
(10), (7), and (8), is given by

(6, —veP)eé' =p, & Icos V. (20)

The next step is to find r. and », invoking (7), (13), and (5),
and then solve (15) by some appropriate means to get ¥,. The
parameters « and B can then be evaluated through recourse to
(19), and the increment in plastic strain is found from
o/ —a; r py_oa—1
3G 2Gce(e; —€l) G
This last equation is obtained by substituting (6) and (7) into
(18) and noting that o/ — o/ = 2G(e; — ¢.). Finally, the
updated stress is given by
or=0,+ce(t—1.) —2G (e —€l) (22)
There is no real obstacle to coding either version of the
exact solution. The strain-space version seems preferable
when the deformations are taken as infinitesimal, for in this
case the elastoplastic stiffness can be calculated without
having to find the stresses. This can save on both computation
and storage costs. Also, strain-space plasticity generalizes
conveniently to accommodate multilinear constitutive
behavior [6]. All one need do is place loading surfaces in
strain space, invoke the solution for each of them, and sum
their respective contributions to the stress relaxation. The
stress-space version, on the other hand, may be more con-
venient when finite deformations are in view. This is true
because most of the schemes advanced thus far for im-
plementing finite deformations plasticity are formulated in
terms of the stress-space theory [9, 18, 19]. Ultimately, the
choice is a matter of personal taste.

(ol —ver) +afe’ @1

The Approximate Algorithms

Four approximate algorithms for implementing plasticity
will now be outlined. The first is based on the strain-space
formulation of plasticity; the other three are carried out in
stress-space. Each can handle cases of strain hardening as well
as of perfect plasticity. This may seem surprising for the
stress-space schemes, but it is possible because the three
constitutive laws [I'+], [T'0], and [I'—] all lead to a single
expression for the elastoplastic stiffness under conditions of
loading.

The assumed trajectory method was introduced recently, in
references [5, 20]. A contact point is sought, just as for the
exact solution, and, assuming the relaxation surface has been
active over the time step, the surface is updated in one of two
ways. If the strain increment protrudes less than one radius
from the surface, then the new center is placed along a line
running from the old center toward the midpoint of the
protruding section. If, on the other hand, the strain increment
extends more than one radius beyond the surface, the
trajectory is approximated by a line extending from the old
center to a point half a radius back from the tip of the strain
increment. Either way, the location of the new center is given
in terms of a single parameter, which is evaluated by invoking
the consistency condition (4) at the end of the time step. Then
s «rf , and o, are found through recourse to (4) and (3).

The tangent stiffness-radial return method has, in one form
or another, been a traditional favorite for use in structural
analysis programs [8-10, 21]. Again, a test is done to
determine whether or not the loading surface has been active.
If so, the elastoplastic stiffness is evaluated at the contact
point and used to obtain a revised estimate for the plastic
portion of the stress increment. Substituting this into equation
(8 of [I'+] and using the contact values of ¢ and ¢’
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throughout the time step, one finds in view of (1) the
corresponding increment of plastic strain. This leads directly
to an updated position and radius for the yield surface. The
final stress is then moved radially (i.e., toward or away from
ve’, as the case may be) so that it lies exactly on the yield
surface.

The secant stiffness-radial return method, introduced by
Rice and Tracey [22], is very similar to the tangent stiffness-
radial return method [8, 9]. The only difference is that the
elastoplastic stiffness and the formula for ¢ from [['+1] are
evaluated not at the contact stress but rather at a point
midway between the contact stress and the trial stress.

The radial return method is the oldest and simplest of the
stress-space algorithms—and also the most consistently ac-
curate [8-10, 23] for cases of perfect plasticity. After finding
the trial stress, one assumes a plastic strain increment parallel
to the full deviatoric strain increment, with the factor of
proportionality based on the special case of a purely radial
loading. This approximation leads immediately to an update
in the position and radius of the yield surface. The trial stress
is then moved either toward or away from the new center so as
to satisfy the consistency condition.

Error Analysis

The new analytical solution provides a useful benchmark
against which to evaluate the performance of the approximate
algorithms. Tests of this sort have already been carried out for
the special case of perfect plasticity [5, 8, 9, 20], but cases
involving strain hardening have received rather less attention
[10]. It remains to be seen, therefore, how strongly the trends
reported for perfect plasticity are influenced by the in-
troduction of hardening. Also lacking is a systematic
assessment of how well the algorithms estimate changes in the
radius of the loading surface. These considerations motivate a
new round of tests for cases of purely kinematic and isotropic
hardening. For each case the mechanical response is taken to
be bilinear under conditions of proportional loading, with the
ratio of elastic to elastoplastic shear stiffness equal to 10. In
accordance with the ground rules of Krieg and Krieg, an
initial state is chosen, which lies directly on the loading
surface, and although principal directions are held constant, a
variety of strain increments is considered. Since the final value
of strain ¢, is a known quantity, the elastoplastic state at the
close of the time step will be fully specified as soon as of is
determined, in view of (3) and (4). It follows that for any of
the four algorithms, the overall accuracy is completely
characterized by the errors arising in the magnitude and
orientation of the radial vector (¢; — arf):

R
|Ej/-‘—C0f lapprox

23
lfjl‘_ca}z lexacl @

6= 100 percent —

. (fjl'_co}[’z)exac( .(ej_ca}e)approx

f=cos™ 24)

I(/I‘—CO';\’ Iexact |€f'—60‘f Iapprox

These parameters can be related to the stress-space theory
through recourse to equation (8). Consistent with the notation
of Krieg and Krieg, 8 is chosen to be negative whenever the
final radial vector, (¢f — caf), ends up lying more nearly
parallel than it should to the initial one, (¢, — ca¥).

Figure 3 gives the test results for the case of kinematic
hardening. Since the radius of the loading surface remains
constant under conditions of kinematic hardening, the
parameter 6 will always be zero and need not be plotted. The
contours of @ for the four methods look qualitatively similar
to the results given elsewhere [20, 8] for the case of perfect
plasticity, except that in general the errors shown here are

" smaller by some 20 percent. An attempt was made while

preparing the contour plots to keep track of how much
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computing time each algorithm consumed. In round figures,
the assumed trajectory, tangent stiffness, secant stiffness, and
radial return methods used respectively 80, 75, 80, and 60
percent of the time required by the exact solution. These
figures, viewed in light of the contour plots, suggest that
radial return is the optimal choice when moderate amounts of
error can be tolerated, and that for more accurate work the
exact solution itself should be used. Although subin-
crementation has in the past been advocated as a means of
achieving accuracy [8, 10], this option no longer seems worthy
of consideration.

The test results for isotropic hardening are given in Figs. 4
and 5. The angle errors, plotted in Fig. 4, are scarcely
distinguishable from those associated with kinematic hard-
ening. Far more noteworthy are the plots of radius error
contained in Fig. 5. The tangent stiffness method leads to
radius errors of up to 30 percent, an order of magnitude
higher than those occurring with any other method. A similar
finding was reported by Shreyer, Kulak, and Kramer [10],
although they did not investigate the assumed trajectory and
secant stiffness methods. Evidently, when the yield surface
radius is variable, the tangent stiffness method should be
avoided. Among the other methods, radial return is probably
the best choice when moderate amounts of error can be
tolerated. For more accurate work the exact solution again
seems preferable to schemes based on subincrementation,
although a closed-form solution for y, is no longer available.
The error in ¥,—and thus the parameter f—can be kept below
a quarter of a degree by using the cubic interpolation formula
derived in the Appendix. This compares favorably to the
errors reported in [10] for subincrementation, and is only
marginally more time consuming than the exact algorithm
used for the kinematic case.

Conclusions

In accordance with the conclusions of Krieg and Krieg, the
radial return method continues to stand out among the ap-
proximate algorithms on account of its conceptual simplicity,
computational speed, and accuracy. However, it does lead to
radius errors on the order of 1 percent and angular errors of
some 10 deg.

When greater accuracy than this is required, computations
should be based directly on the exact solution, either in its
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closed-form version, which is appropriate for perfect
plasticity and kinematic hardening, or else in one of the
asymptotic representations given in the Appendix. These
options take from 50 to 100 percent more computation time
than radial return but are virtually error-free. Accordingly,
they promise to be more efficient computationally than
methods that rely on subincrementation. The exact solution
can be applied to stress as well as to strain-space loading
surfaces, and thus can be generalized in any of the standard
ways to accommodate finite deformations. It also extends
readily to the case of multilinear response curves. It should
prove useful in a broad range of computational applications.
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APPENDIX

As noted previously, the angle ¥ (¢) satisfying equation (15)
admits a closed-form representation only when 75 equals either
zero or one. To deal with intermediate values of 5, one ap-
proach is to seek perturbation solutions valid for 5 near these
limiting values. Toward this end let the dependent variable

Y1) =Yoo (1) +1 You (£) +0(n2) (A.1a)
Y =10 (1) + (=11, (0) +0((n—1)?).  (A.1b)

and introduce Taylor series expansions about 5 equal to zero
and one for the factor (sin y/sin y.)7. Substituting the ex-
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pansions about n=0 into (15) and collecting like powers in 7,
one finds that

Yoo = — 7 Sin Yoo (A4.20)
l1/01 = —7[(005 Yoolvor
+ (lnM)sin ¢m], (A.30)
sin ..
where
y=léet/r. (A.4)
Similarly, the expansions about n = 1 lead to
. sin?y
Vo= —y—2 (A.2b)
sin Y,
. sin ¥,cos ¥
Yy = ‘7[2——.10——”"-19‘ 121
sin ¥,
+ Mln(—s-‘f—‘b—‘ﬂ)] (A.3b)
sin ¥, sin ¥,
The appropriate initial conditions are
Yoolte) =v¥olte) =y (A4.5)
Yor(t:) =¥y (¢,) =0. (A4.6)

Solutions to the zeroth-order problems are given in equation
(16). Finding the first-order solutions turns out to be
straightforward, albeit tedius.

Yor(t) =sech[y(t—¢,— 7)] [7(t—tc)ln sin y,

Y=t —1)
+ S In cosh % dx] s (A.7a)

—v7

1 1
where 7= — In tan (— \//C) ;
% 2

1
Yul) =

Y
sin .

2
(t—t.) +cot \bc] +1

Y
sin ..

Y . 1
[sin% (t—tc)llnsmd/c——ll+5{ (t—t,)

+cot %}ln{[sinwgb (t—t,) +cot \h] ’ +1}

+cot y¥,In sin ¢C+tan‘1{—7— (r—t.)

sin ¥,
+cot g[xc} - % +¢C].

The integral in (4.74) does not admit a closed-form
representation, although a power series expansion for it can
be found in section 2.479.7 of [24]. A more practical ap-
proach is to integrate numerically.

If n lies within 0.05 of either zero or one, it seems best to use
just one of the perturbation solutions, which ever is more
appropriate. For intermediate values of 7, on the other hand,
the authors recommend an interpolation, cubic in #, which
matches both of the perturbation solutions:

V* = 2vgo + Vo1 — 2¥50 + ¥ )0’
+ (=300~ 2%01 + 310 — Y1 )97
+ Yo+ ¥go-

(A.7b)

(A.8)

Transactions of the ASME

Downloaded 02 May 2010 to 171.66.16.25. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



The Sliding With Coulomb Friction
of a Rigid Indentor Over a Power-
Law Inhomogeneous Linearly

J. R. Walton

Department of Mathematics
Texas A&M University
College Station, Texas 77843

Viscoelastic Halt-Plane’

In a previous paper, the title problem was solved for a homogeneous power-law
linearly viscoelastic half-plane. Such material has a constant Poisson’s ratio and a

shear modulus with a power-law dependence on time. In this paper, the shear
modulus is assumed also to have a power-law dependence on depth from the half-
plane boundary. As in the earlier paper, only a quasi-static analysis is presented,
that is, the enertial terms in the equations of motion are not retained and the in-
dentor is assumed to slide with constant speed. The resulting boundary value
problem is reduced to a generalized Abel integral equation. A simple closed-form
solution is obtained from which all relevant physical parameters are easily com-

puted.

1 Introduction

In a previous paper [3] a quasi-static analysis was
presented for the problem of a rigid asperity sliding with
Coulomb friction over the surface of a homogeneous and
isotropic power-law linearly viscoelastic half-plane. The
power-law model may be characterized by a linear constitutive
law with a constant Poisson’s ratio, », and a shear modulus,
i, of the form

W) =p(/t)" 0))
where ¢ denotes time, f, is a characteristic relaxation time, and
ke 18 a characteristic modulus. In [3], a simple closed-form
solution for the normal stress under the moving indentor was
obtained by reduction of the boundary value problem to a
generalized Abel integral equation. The Abel equation was
then solved by transformation to an equivalent Riemann-
Hilbert boundary value problem.

Of prime importance in viscoelastic punch problems is the
prediction of the horizontal force, f;,, impeding the motion of
the indentor. In general, it is non zero even for frictionless
contact and symmetric asperity shapes. This is due to the
asymmetrical distribution of material under the indentor. The
friction coefficient, ¢, is then defined to be the ratio of £} to
the total vertical load, A, on the contact set, C, due to the
weight of the punch. That is,

IThis work was supported in part by a contract with the American Gas
Association and by a contract with the Office of Naval Research, ONR Con-
tract No. N00014-75-C-0325.
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itself in the JOURNAL OF APPLIED MECHANICS. Manuscript received by ASME
Applied Mechanics Division, July, 1983; final revision, October, 1983.
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where 0, (x) is the normal stress on the half-plane surface and
u,.(x) is the x-partial derivative of the normal surface
displacement u,. In [3], simple expressions were derived for
the foregoing three parameters, f,, N\, and c;, fo three
canonical punch shapes: parabolic (as an approximation toa *
cylinder), wedge, and flat.

An additional parameter of interest for physical
simulations of moving asperity problems is the depth of
penetration of the punch into the medium. The depth of
penetration, d, is defined here to be the distance between the
leading contact point on the punch and the tangent line
passing through the apex. This choice of definition of the
depth of penetration is motivated by the fact that it is both
easily controlled in physical experiments (such as drag box
simulations of pipe-soil interactions) and easily calculated for
the mathematical model employed here.

The assumption of a simple power-law behavior in time for
the shear modulus introduces certain unphysical features into
the model, principally through the short and long-time
asymptotic behavior of the modulus. For example, in [3] it
was shown that for frictionless sliding and 1/2<a<1, the
stress under the indentor possesses a singularity at the leading
contact point, even for a smooth parabolic punch. Moreover,
the material does not wrap around the apex of the punch, but
rather, contact occurs only on the leading face of the in-
dentor.

However, as pointed out in [3] and several references in its
accompanying bibliography, these physically unrealistic
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consequences of the pure power-law model do not render it
unacceptable for engineering predictions. While the model is
apparently suspect for predicting the details of the stress and
displacement fields, it does very well in the prediction of f,
and cy, better, for example, than the standard linear solid or
even exponential models with a fairly large number of
relaxation times. This is because the power-law model fits real
viscoelastic data (e.g., for rubber and many polymeric
materials) in simple relaxation tests over large time intervals
better than does the standard linear solid. To do as well with
more general exponential models, it is often necessary to
incorporate a large number of relaxation times. Moreover, for
such exponential models the boundary value problems
corresponding to punch problems are much more complicated
to solve than for the power-law model.

In this paper, the quasi-static punch problem is recon-
sidered, except that the viscoelastic shear modulus is also
assumed to have a power-law depth dependence. Specifically,
the shear modulus u(¢,y) has the form

wE )= p (/1) G/y ) (5)
where y, is a characteristic depth from the half-plane surface
and O0<+vy=<1. Again it may at first appear that a model with a
simple power-law depth dependence is physically
unreasonable and therefore uninteresting, except perhaps for
purely mathematical reasons. However,
materials (e.g., sea bottom mud) whose mechanical behavior
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there are real

obeys such a power-law model over very broad ranges of time
and depth. Use of the power-law model therefore provides for
these materials important qualitative and quantative in-
formation on the dependence of f;, and ¢, on the material
viscoelasticity and inhomogeneity.

For example, the physical problem that motivated this
study is that of a pipeline (rigid indentor) moving over the
ocean floor (viscoelastic half-space). Experimental evidence
[2] suggests that for the purpose of predicting the forces on
the pipe, the mechanical behavior of the mud on the ocean
bottom can be described effectively by the power-law model
(5). It should be remarked that for the pipeline-mud in-
teraction, the Coulomb friction assumption does not appear
to be applicable. It is incorporated in the analysis presented
here because of its possible applicability to other physical
scenarios and for its theoretical and mathematical interest.

Another physical situation for which the power-law model
(5) may provide useful insight is when the frictional in-
teraction between the punch and the material half-space
produces a significant thermal gradient which in turn
produces a depth-dependent softening of the material. Such
might occur for a rubber tire sliding rapidly over pavement or
a metal-polymeric material interaction in which friction
produces a local temperature rise above the glass transition
temperature.

In the next section, the transformation of the governing
boundary value problem to a generalized Abel integral
equation is presented. The solution of the Abel equation is
derived in Section -3 and certain physically important
parameters are computed for a parabolic punch. Only a
parabolic indentor profile is considered since with it the
salient features of the model are easily illustrated. Moreover,
the parabolic punch is a shape applicable to the pipeline-mud
problem that motivated this investigation. The paper con-
cludes with a section in which the results of numerical ex-
periments are presented in order to illustrate the magnitude of
the effect on force predictions of the material inhomogenity
assumption.

2 Derivation of Integral Equation

The problem to be studied is that of determining the plane-
strain quasi-static stress and displacement fields in a linearly
viscoelastic half-plane that are produced by a punch sliding
with Coulomb friction on the half-plane surface. The punch is
assumed to be sliding to the left with constant speed v and be
such that the contact set is a single interval. The specific
boundary value problem to be solved is then

GUJ=0 —0°<x1<0°, XZ>0

o;=2p*de; + 9 l—i% wrdegy
&12(%1,0)= —kogsy(x,,0), —00<x; <00
02 (x,,0)=0, x, <a—vf or x; >b—vt (7
Uy ((x),0)= ~f"(x; + ), a—vi<x; <b-uvt, 8)

where ¢}, €;, and u; are the viscoelastic stress, strain, and
displacement fields, g,; denotes partial differentiation; f’ (=) is
the derivative of the punch profile f(+); v is Poisson’s ratio
(assumed to be constant); u is the shear modulus; £ is a
constant; 6; is the Kroneker delta, and f*de denotes the
Riemann-Stieltjes convolution

ﬁde = S io St = 8)de(s).

The construction of the solution of the preceding equations
is facilitated by adoption of the Galilean variable x=x; + vt
and the change of variables, y, =y, 0, =0,
u; =u,, etc. For the shear modulus we take the power-law
model (5). A Fourier transform in x may now be applied to

g12 = ny!
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reduce the boundary value problem to an integral equation
over the contact interval (a,b).

A key step in the Fourier transform method is the con-
struction of the so called viscoelastic transfer function, i.e.,
the function 7(p) for which

b,,,(,0)= T(P)4,(p,0) .9)
where f(p.y) denotes the Fourier transform '

Aoy = S : fooyye ¥dx.

Rather than directly perform the calculations for the
inhomogeneous half-plane analogous to those presented in [1]
for the homogeneous case, we appeal to the viscoelastic
correspondence principle. Use can then be made of the known
integral boundary relation between elastic stresses and
displacements for a power-law depth-dependent shear
modulus. Specifically, it is shown in Gladwell [1] (pp. 301-
311) that

wer)= | lgnsente— 0o, (.0
'“gzz(ff,y(t,o)]l.X"‘tl ~dt (10)

where u5, o%,, and of, are the elastic displacement and
stresses. The constants g,, and g,, are given by

g1z = (1=n) cos(nq/2)/[mpiv]
82 = (1—w)lg sin(mq/2)/[mpiv(1-7)]
g = [(A+yU-y/QA-1*
I = 27(y+2)B((y+q+3)/2, (y—q+3)/2).

The elastic shear modulus adopted by Gladwell has the form
PO =pcy .

The viscoelastic transfer function may now be derived by
Fourier transformation of (10) and substitution of the
transformed viscoelastic shear modulus for p¢. (Recall that x
is the Galilean variable x, + vf. Thus u(¢,x,) is a function of x

and y, and j denotes its Fourier transform with respect to x.)
In this way it can be shown that

(1 = W1 sin(gn/2)y2Gp) = 1p1 71 (1 - id sgn(p))
(vt )*T(1 ~ )T +7) cos (y1/2) ’

Tp)= —2
)

where sgn(e) is the signum function and

6= (k/q)(1 + y)cot(gw/2)cot(yn/2).
We remark that the Coulomb boundary condition (6) has been
incorporated into the transfer function (11).

Substitution of (11) into (9) followed by Fourier inversion
and the application of the boundary conditions (7) and (8)
produces the desired integral equation for the unknown
normal stress, o,,(x,0), under the known punch, f(x). Only a
parabolic punch profile will be considered here. Therefore,
for f(x) we take

f(x)=-x/R

where R is a constant (cylinder radius). Moreover, it is
convenient to consider separately the two cases: 0 < a < y <
land0 sy <a<l,

Casel. 0 < a <y < 1. Definethe constant K, by
_ 1~ T2 +7) cos (yn/2)
h q(1 — »)I sin(gn/2)

Then, after multiplication by (ip), (9) becomes

0 (12)

~ Koo ()Y iy, = (ip)~“Ip 17~} (1 - &i sgn(p))d,,,.. (13)
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An easy calculation shows that

(l/Z)ST e, (ip) *Ipl"'dp (14)
=T(y-a) [cos('yﬂ'/Z)S way),,x(t)(t —Xx)* " Vdt
+cos((y— 2a)7r/2)§ i . Oy (D= 1)~ th]
and
12| oo, (ism®) (p) lplldp (19)

©

=T(y—a) [sin('yw/Z)S 0y (O~ )%t
— sin((y—2a)/2) S ;, Gy (X — 1) dt] .

Fourier inversion of (13) together with (7), (14), and (13)
produces the generalized Able integral equation

hKOP’c(Utc)ayc 77(7/1‘(7 - a))uy,x(x)

b
= [cos(ym/2) — 8sin(yn/2)] S . @y (O — X)) dE (16)

+ [cos((y— 2a)w/2) + Ssin((y — 2a) 7/ 2)]

S Ty (O — D dt.
Introducing the parameters K, w, «’ and 8’ given by
K, = Kycos(wn/2)/cos(B’ m/2)
o tan(wn/2)
! l+a—vy

amn

84
g =

equation (16) becomes

v+ w,

_Kl .u’c(vtc)ayc _7(7[-/[‘(1 - a,))uy,x
b
= Sx 0, (O =X)* dt

cos((B’ +2a')n/2)
cos(f8' w/2)
Equation (18) is the desired generalized Abel equation for
Case 1. It should be noted that equation (18) is functionally
identical to equation (8) of [3] for a homogeneous power-law
viscoelastic half plane.

S 0,y — 1) 1. 8)

CaseIl. 0 < y < a < 1. For Case I, line (13) is replaced

by

—Kouc (vt ) ey i, o= (ip) '~ Ipl7~ (1 - disgn(p) ) 6,y (19)
Fourier inversion of (19) produces

—KOMC(vtc)aygy(W/F(l +y- a))uy,x(x)
b
=[cos(y7m/2) — dsin(yw/2)] SX o, (O —x)*"77 Tde (20)

— [cos((y—2a) {(w/2) + dsin((y — 2} w/2]
SX 0, (Dc—N*"""1dt.
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New defining o” and 8” by
a' =a-—-y
B =y+o
vae ol;tlain the desired generalized Abel integral equation for
ase II,

b _
"KWN%VNWWHPﬂﬂWMM=SQMMHM“”W

cos((ﬁ” +2a”)n/2) o
cos(B” n/2) S 9y (x=1) ldt

In the next section, the solutions to (18) and (22) are
presented.

22

3 Solution of Generalized Abel Equation

Since f'(x)= —x/R, we may utilize in the solution of (18)
and (22) much of the analysis developed in [3] for a parabolic
indentor sliding over a homogeneous half plane. First con-
sider (22). From the solution given on p. 313 of [3] (after
correction of the obvious misprints) we obtain

0y ()= — (K, /R)pe(vt )y "1+ (tan 1 (8" 7/2))] -
b
[(I/F(I - a”))S ‘ (b—1)B" -2 — gy -8" ~2a" V24

_ F((B” + 1)/2)(1 —2a” ——B")(b__a)l——a "
2P@~a")T (148" +2a")/2)

b
S (b _ t)(ﬂ" +2a” - 1)/2
X

(t—a)‘W+W2(t—x)"’"dt]. 23)

The form of the solution given by (23) can be simplified. First
observe that

b
S (b- t)(a” +2a” ‘”/z(t—a)'(ﬁﬂ +l)/2(t___x)—c(” dt
X

"o E 8" +1)/2)n

n=0 n!

=b-a)®

b " " ”
(b-—a)”'S t—-x)"* (b—pF +2a -D/2ingy
X

8" +1)/2)n

=(b- @(EHW235—7—~u( —a)™"

X (b—x)"tE V2Bl ~a” n+(B" +2a” +1)/2)
where (), -denotes the

(v)n=T(y+n)/T(v), and B(s,
ferentiation of (24) results in

Pochhammer symbol,
¢) is the beta function. Dif-

;S (b- t)(ﬁ +2a”—l)/2(t_a) ®8” +0/2(s = x)- o” a’t

T(1 —a”)L((B” +2a" +1)/2)
T((B” +1)/2)

X(b—a)* '2(b x) 8" - D/2(x— g)(=8" +2a” +112 @5)
Differentiating (23) and applying (25) and (21) yields
Gy () = (K / RYp (U2 )y Y (b
_x)(7+w+ WZ(x—'a) —QRa—y+w+1)/2
x+(b-a)wt+ta)/(1+v—a)) 26)

where K, is given by

292/ Vol. 51, JUNE 1984

K, =K, [1+(tan ' ((y+ w)7/2))?] " “/T(1 +y— ). (27)

Moreover, from the analysis in [3] it follows that the
contact interval endpoints, ¢ and b, are given by

(b a)

Il

Q+y+w)/(I+y—)

b = (b;”)(lﬂ—za-@)/(uy—a). 28)
Combining (26) and (28) we obtain
0y (X) = (K3 /R (02, ) V(b —x)r+e= D72
(x—a) " CertetD2(x 4 g4 b). (29)
From (29) it now follows by a simple integration that
0y (x) = — (K3/R)p (01)*y "
(b —x)rr et D2(y _ g)(1+y-w=20/2 (30)
where K3 =K,/(1 +v— a). Line (30) is the desired solution for
Case I1.

For Case I, it is equation (18) that must be solved. Although
equation (18) is a generalized Abel equation of the same
functional form as (22), it is apparent that the solution given
on p. 313 of [3] that was applied to (22) cannot be used for
(18). The reason for this is that (18) relates o), , rather than
oy, to u, . If the solution on p. 313 in [3] were employed on
(18), then (23) with a” replaced by «’ and o,, replaced by
o,y Would be the solution to (18). But such a solution is
physically and mathematically unacceptable. For example,
the right side of (23) is a continuous function at x =5 for all
permissible values of «, v, and w, whereas, it is clear that for
certain values of «, v, and w, ,,  is singular as x—b.

The solution to (18) may be constructed by appealing to the
general solution method described in [3]. Specifically, we
apply formula (21) on p. 306 of [3]. It may then be shown that
oy, for Case I is given by (29) in the foregoing, that is, the
solution for Case 1 is the same as for Case II. Consequently,
o,, for Case I is also given by (30) and the contract interval
endpoints, @ and b, by (28). The calculations required to
construct the solution of equation (18) are lengthy but straight
forward. Therefore, they will be omitted.

We remark that setting y=0 in (30) yields a simpler form
for the solution in the case of a homogeneous half space than
was presented in [3]. Moreover, when a=0, line (30) is the
solution for a power-law inhomogeneous linearly elastic
material. An attractive feature of the power-law
inhomogeneous linear viscoelastic model is that it admits a
solution to this import canonical punch problem that has the
same simple functional form as the solution to the
corresponding problem for homogeneous linearly elastic
material. Consequently, it is a relatively simple matter to
determine both qualitatively and quatitatively the effect of
adding material viscoelasticity and inhomogeneity to a basic
linear elastic model.

We remark further than from (28)-(30) it follows easily that
0,,(x) is continuous at x = b for all admissible values of «, v,
and ». However, at x=a, 0,,(x) is continuous if and only if
a+(w—v)/2<1/2. For a+(w-7v)/2=1/2, a,, has a jump
discontinuity at x=a and for a+(w—+v)/2>1/2 it has a
singularity of order (1 +vy—w—2«)/2 at x=a. Moreover, if
a+{(w-7v)/221/2, 0,,(x) is monotone on (a,b), whereas, if
a+(w—7v)/2<1/2, it has a unique maximum at

—(b-a)o+wy/(l+y—w

(b+a).

Finally, we note that for a+(w—1v)/2<1/2, the material
wraps around the punch, whereas, for o+ (w—7)/2=1/2 the

contact set is entirely on the leading face of the punch. These
observations are generalizations to inhomogeneous material

X =
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of similar observations made in [3] for homogeneous power-
law material.

This section concludes with the calculation of the four
physical parameters f;, A, and ¢, and d. Due to the simple
nature of o,,(x) for a parabolic indentor, their calculation is
routine. Consequently none of the details of the calculations
are included here. It can easily be verified by substitution of
(30) into (3) that

A= —K3(u./R) vt )"y " B(B+y—w— 201)/2,

B+y+w)/2)b—-a)*tr =, 31
Similarly, from (2) we obtain
Q+y-—a)a+w)
fn= Ep T ww—— Nb-a)/R, 32)
and combining (4), (31), and (32) yields
o= Zrvz et o p (33)

T Bty-a)(1+y—a)

Finally, from (28) and the fact that the depth of penetration,
d, is given by d = a®/(2R), we see that d is given by

d=(1/72R)(b-a)/2)> (L + v+ @)*/(1 +v— )2, (34)

4 Numerical Examples

The principal focus of the numerical study of the
theoretical results was the following problem: Find an ‘‘ef-
fective depth,”” y,, such that the force on the indentor
predicted by the inhomogeneous material model equals the
force predicted by a homogeneous model with shear modulus
equal to the inhomogeneous modulus evaluated at y=y,.
Hence, the value of the modulus of the mud at depth y=y,
can be thought of as an ‘‘effective modulus’’ for predicting
the horizontal force on the indentor.

This question is answered quite easily. For the sake of
simplicity it will be assumed that there is no Coulomb fric-
tional force, i.e., w=0. Moreover, d/R will be regarded as an
input parameter since, for example, it is easily controlled in
dragbox experiments of a pipe sliding over mud. From (31),
(32), and (34) it is easily seen that, assuming an
inhomogeneous model,

Journal of Applied Mechanics

Sn=Ky(a, )R (vt./RY* (p./R) ~7 ((b—a) /R)3*+71-=, (35)
with
(b—a)/R=2Qd/R)"*(1 +y-a)/(1 +7) (36)
and
Ky(a,v)= - K3 (o, M)B(B +v-20)/2, 3+7)/2). (37

For a homogeneous material model with modulus given by
the inhomogeneous model evaluated at an effective depth, y,,
i.e., for which

W)= p 01/ y )WL) =1/,

the predicted force is given by (35)-(37) with y=0 and p,
substituted for u,.. Hence

S = K4(e,00Rp, (vt ./R)*((b~a)/R)* = (38)
with
(b—a)/R=2Q2d/R)"(1 - q).
Equating £, in both (35) and (38), it is seen that
K4(a77)
Y = = 485 R)~Y
(yl/yc) I‘,’E/I‘LC K4(Ol,0) (.yc/ )
1 — 3+y-—a
x[ v O‘] (1= 27Qd/R) V2. (39)
1+y

To illustrate the result (39), the value of (n./p.)
(d/R)~"*(y./R)” was computed for several values of «, v,
and » and is displayed in the following graphs. It should be
noted that y=1 and »=1/2 is a singular limit in that (u,/p.)
becomes unbounded as vy and vtend to 1 and 1/2, respectively.
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fractional order. To this point, the justification for such models has resided in the
Jfact that they are effective in describing the behavior of real materials. In this work,
the fractional derivative is shown to arise naturally in the description of certain
motions of a Newtonian fluid. We claim this provides some justification for the use
of ad hoc relationships which include the fractional derivative. An application of

such a constitutive relationship to the prediction of the transient response of a
Sfrequency-dependent material is included.

Introduction

A number of authors have implicitly or explicitly used the
fractional calculus as an empirical method of describing the
properties of viscoelastic materials. Nutting’s [1] modeling of
stress relaxation phenomenon by fractional powers of time,
rather than by decaying exponentials, is equivalent, as is
Gemant’s observation that the stiffness and damping of
viscoelastic materials are proportional to fractional powers of
frequency [2]. He suggested, in fact, that time differentials of
fractional order might model such behavior [3]. Scott-Blair
noted that fractional-order time derivatives [4] would
simultaneously model stress relaxation and frequency
dependence.

The viscoelastic behavior of geological strata and of metals
and glasses have been modeled by Caputo [5, 6] and by
Caputo and Minardi [7] through the use of constitutive
relationships employing the fractional calculus. Recent work
has shown that constitutive equations containing fractional
derivatives are effective in describing the frequency-
dependent behavior of viscoelastic polymers [8] and that the
fractional calculus leads to well-posed problems for the
motion of structures containing elastic and viscoelastic
components [9], even when incorporated into a finite-element
approach [10]. A particular virtue of constitutive relations
containing fractional derivatives is that they lead to a casual
response at zero time [9], thereby having a distinct advantage
over convolution methods employing a structural damping
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model in that they may be safely employed to predict transient
response.

Our recent work has emphasized the fractional calculus
approach to modeling materials usually considered
viscoelastic. Both three-parameter models, of the form,

o(8) =Goe(t) + G, D*[e(1)], ¢
and five-parameter models, of the form,
o(t) +bDP[a(1)] = Goe(t) + G, D*[e(1)] 2)

have been explored. Here, o(¢) and e(¢) are the stress and
strain histories, and b, G,, G, «, and f are parameters of the
model to be determined by least-squares fits to experimental
data. Four-parameter models reduced from the five-
parameter model by setting o = (8 are especially attractive.
Models for 30 materials have been established [11].

Fractional differentiation is an operator that generalizes the
order of differentiation to fractional values. It is the inverse
of the operation of fractional integration attributed to
Riemann and Liouville, The fractional derivative of order « is
defined [12] as

1 d S’ x(7)
(1-a) dtJo (t—1)°

The fractional derivative model, equation (2), portrays the
mechanical properties of materials in the rubbery region,
through the transition region, and into the glassy region. For
a typical material, this spans six or more decades of
frequency.

In view of the surprising success that has been obtained
with an empirical model containing so few parameters, one is
inclined to ask if there might not be a theoretical basis behind
the model. Such a basis has been found, and is reported
elsewhere [13]. Nonetheless, fractional derivatives are a
somewhat unusual means of describing the behavior of real
materials and we believe it of interest to demonstrate that the

dr O<a<l. 3)

Dx(D)]=
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(1)

RIGID PLATE 2

NEWTONIAN
FLUID

Y

NEGATIVE
Z
AX1S

Fig.1 Semi-infinite fluid sheared by rigid plate

response of a system containing familiar natural elements can
be expressed in terms of fractional derivatives.
for a

A Fractional Derivative Relationship

Homogeneous Newtonian Fluid

We have found that a fractional derivative relationship can
be identified in the solution to a classic problem in the motion
of viscous fluids. In Stoke’s Second Problem, one seeks the
behavior of a half-space of Newtonian, viscous fluid un-
dergoing the motion induced by the prescribed uniform
sinusoidal motion of a plate on the surface. We will consider
such a fluid half-space, initially at rest, and permit the plate at
the boundary to commence a general transverse motion, as in
Fig. 1. We will show that the resulting shear stress at any point
in the fluid can be expressed directly in terms of a fractional
order time derivative of the fluid velocity profile.

The equation of motion,

v v
Pt TH e
is the diffusion equation, where p is the fluid density, u is the
viscosity, and v is the profile of the transverse fluid velocity; a
function of time, ¢, and the distance, z, from the ‘‘wetted”’
plate.

By taking the Laplace transform, we obtain an ordinary

differential equation

@

. d*i(5,2)
pls0(s,z) —v(0,x)] =pga %)
where
zi(s,z):S: e=stu(t,2)di = £[v(1,2)] ©)

and v(0,2) is the initial velocity profile in the fluid. If we take
the initial velocity of the fluid to be zero and apply the
boundary conditions, that the velocity of the fluid at the
“wetted’’ plate must match the velocity of the plate, v, (1),
and that the velocity of the fluid in the half-space must be
bounded, we have:
253172,
v(s,2)=0v,(s)e * (7

where 9, (s) is the transform of the prescribed velocity of the
plate.
Having obtained the transform of the velocity profile in the

fluid, &(s,z), by writing the transformed shear stress
relationship for the Newtonian fluid,
dv(t,z)

o(t,z) = 8

(t,zy=p P (8)

Journal of Applied Mechanics

83 (s,
5(5,2) =uiﬁjz~z~)— ©

The resulting expression for the transform of the stress in
terms of the transform of the velocity, equation (7), is

5(5,2) =V ppVs 5(5,2) (10)

We can bring this transforin back into the time domain by
observing it to be the product of two transforms.

-1
5(5,2) =Vup —=50(s,2) a1
1 av
9(s:2) =W’£[W]'£[ o] (12)

Thus, the stress is the convolution of two functions of time, or

]
Vo S! 2 (79
[(1/2) Jo (s~7)12

o(t,z) = (13)

Since the initial velocity profile, v(0,z), was taken to be zero,
equation (13) can be shown to be equivalent to

_ 1 a (" v(nz)
“U’Z)“mm/Z)ESo -z 9 a4

The expression in the brackets is precisely in the form of a
derivative of fractional order with respect to time, as defined
in equation (3). The order of the differentiation is 1/2, and
the partial derivative is indicated because the convolution
integral is a function of ¢ and z. In operator format, equation
(14) becomes

o(t,2) =V upD {3 v (1,2)] 15)

The subscript, £, in parentheses, is used to denote that the
fractional differentiation is with respect to time. The form of
this solution is similar to that found by Donaldson [14] in
presenting general solutions to the diffusion equation by using
fractional calculus.

Although equation (15) appears to be an unusual
relationship between stress and velocity, it should be recalled
that it was obtained by requiring the satisfaction of the
customary stress-velocity relationship for a Newtonian fluid.
Equation (15) is not the constitutive relationship for the
Newtonian fluid. The constitutive relationship is equation (8).
Equation (15), however, does describe the relationship be-
tween stress and velocity everywhere in the. fluid for this
particular geometry (semi-infinite fluid domain) and loading
(prescribed velocity at the boundary). The importance of this,
in the present context, is that a fractional derivative has been
shown to describe the behavior of a real, physical system,
without resorting to empiricism.

Motion of an Immersed Plate

Consider now the rigid plate of mass m immersed in a
Newtonian fluid of infinite extent and connected by a
massless spring of stiffness K to a fixed point. The system is
depicted in Fig. 2. We assume that the small motions of the
spring do not disturb the fluid, and that the area of the plate,
A, is sufficiently large as to produce in the fluid adjacent to
the plate the velocity field and stresses developed in the
preceding section, see equations (7) and (15).

Summing forces on the plate, we find the differential
equation describing the displacement, X, of the plate to be

m X=F = ~K X~-24 o(1,0) (16)

Substituting the stress from equation (15), and using V,(t,0)
= X (¢), we arrive at the somewhat surprising result
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X
Fig.2 The immersed plate

d*x
mW +2A4AVpu pD%{,ZX+K X=0 (17)
where
dX d
D¥X=D" _— = _D"X 18
dt dt (18)

Thus, the fractional derivative is found to appear in the
differential equation which describes the motion of a simple,
physical system consisting of familiar mechanical and fluid
components. Moreover, its presence may be anticipated in
any system characterized by localized motion in a viscous
fluid. Such is the case for oscillations of a polymeric material.
We believe this accounts for the success of a fractional
derivative in modeling these materials.

Application to Transient Response of an Elastomer

A three-parameter model, equation (1), was developed to fit
experimental data for 3-M 467% adhesive at 75°F. Data [15]
obtained under steady sinusoidal oscillation were used.
Parameters were found to be

a = 0.56
G, = 1.0Ib/in.2
G, = 7.31b-sec®*®/in.?

The data and the model are compared in Fig. 3. A transient
experiment was designed as the most effective means of
testing the ability of the model to predict behavior over a wide
range of frequencies. Pads of 3-M 467 material were used as a
viscoelastic spring in the one degree-of-freedom system shown
in Fig. 4. Details of the experiment are given elsewhere [9].
The specific objective was to compare measured and
predicted values of the acceleration transfer function, i.e., the
ratio of the transforms of the acceleration-time history to the
force-time history. The oscillator mass was tapped with an
impedance head. The output (the force-time history) and the

23.M 467 is a product of the Minnesota Mining and Manufacturing Com-
pany, St. Paul, Minnesota.
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Fig. 3 Material properties of 3M-467 and predictions of three-
parameter model
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Fig.4 Single degree-of-freedom system with viscoelastic spring

output of the accelerometer were each sampled at 2x 104
measurements per sec. All frequencies above 8Khz level were
filtered. Both transforms were computed by using fast Fourier
transforms.

A transfer function was predicted for the system by
assuming a state of pure shear in each pad,

e(t)=x(t)/6 19)
Where x(¢) is the displacement of the oscillator, and & is the
pad thickness.
The restoring force on the oscillator is then
24

Jplt)= 5 (Go+ G, DE ) x(1) (20
Here A is the area of each shear pad and the stress-strain
relationship is taken to be the three-parameter model.

The equation relating the applied force and the acceleration
is then

Sy =m x(t) +1, (1) @n

Taking the Fourier transform of the equations of motion,
equations (20) and (21), enables an acceleration transfer
function to be determined. The result is:

(i) X (w) _{ 24 [Go+Gl(iw)“]] -t
Flw) ) (iw)?

Experiments with five different combinations of mass and
pad area were conducted. The transfer function for each case
was obtained by averaging six runs. Values of system
parameters for two cases are given in Table 1. The results of
each experiment were then compared with the prediction,
equation (22). In all cases, both amplitude and phase were
found to be in satisfactory agreement. Results for Case 1
(Figs. 5 and 6) and Case 5 (Figs. 7 and 8) are typical of those
obtained. Further comparisons are to be found in [9].

(22)
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Table1 System parameters for oscillators

Mass (including

Case accelerometer)
1 18.8x10 3 slug
5 3.48 %1073 slug
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Fig.5 The magnitude of the transfer function for Case 1
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Fig.6 The phase of the transfer function for Case 1

For purposes of comparison, the 3M-467 adhesive was also
modeled as a Voigt solid. Parameters chosen to match the
sinusoidal data at 1 Khz led to a constitutive relationship:

a(t) =Gy e(£) + G, (1) (23)
G, =6301b/in.? 24)
G, =0.113 Ib-sec/in.? (25)

Predictions of the acceleration transfer function for this
constitutive relationship may be obtained from equation (22)
with o= 1. Some results are given on Figs. 5-8, and additional
comparisons in [9]. In all cases, the predictions of the Voigt
mode! deviate significantly at frequencies much above the
frequency (1 Khz) used for parameter determination. The
mid-frequency prediction would be improved by choosing
model parameters at a higher frequency, but the improvement
would be at the expense of agreement at the lower frequency.
The superior ability of the three-parameter model with a
fractional derivative to predict quantitatively the transfer
function over a range of frequencies and a variety of systems
is evident. There is, however, a qualitative distinction between
the predictions of the Voigt model and those of the three-
parameter model which may be even more significant. The
transfer function for the Voigt model is a monotonically
increasing function for any possible choice of model
parameters. The data, on the other hand, clearly show the
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Fig.8 The phase of the transfer function for Case 5

presence of 2 maximum, as do the predictions of the three-
parameter model. Thus, the advantage of the improved
description of the frequency-dependent modulus afforded by
the three-parameter model is evident even for the relatively
narrow range of frequencies occurring in this realistic
simulation of the transient response of a damped structure.

Summary and Discussion

Fractional derivatives have been used to describe the
behavior of viscoelastic materials, but their use has been
viewed as a somewhat artificial means of generating con-
stitutive equations. We have shown here that the fractional
derivative arises naturally if a familiar system, the rigid plate
bounded by a Newtonian fluid, is viewed in a certain way.
Stresses at any point in the interior of the fluid in motion were
found to be proportional to a fractional derivative of the local
velocity.

A consequence of this is the somewhat surprising results
that the in-plane oscillations of a rigid plate immersed in a
Newtonian fluid do not generate a retarding force propor-
tional to the velocity. Rather, the retarding force is found to
be proportional to a fractional derivative of order 3/2 of the
displacement. This occurs because the depth of fluid par-
ticipating in the motion is not the same for all motion, as it is
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in a fully developed steady flow. The phenomena may be best
understood by considering such a plate to be in simple har-
monic motion. At a high frequency, only a thin boundary
layer is excited; thus the average shear stress in the Newtonian
Sluid is high. At a lower frequency, the same amplitude of
plate motion allows a greater depth of fluid to participate in
the motion. Consequently, the shear stress in the Newtonian
fluid is less. Since the excitation of the fluid is a process of
diffusion, rather than wave propagation, and the diffusion
time is governed by the period of the oscillation, the
penetration distances (and therefore the average shear stress)
depend on the square root of the frequency. Such a depen-
dence in the frequency domain is associated with a temporal
dependence of the ‘‘one-half’’ derivative. Thus, fractional
derivatives are shown to occur naturally in systems containing
Newtonian fluids.

Data for the elastomer 3M-467 was found to be well
described by a three-parameter model, with stress being
proportional to strain and to the “0.56’’ time derivative of
strain. The model, obtained from data for sinusoidal motion,
was used to predict response of a single degree-of-freedom
oscillator to an impulse. A comparison of the predicted and
observed acceleration transfer functions showed good
agreement, and the fractional derivative model was observed
to be both qualitatively and quantitatively superior for this
prediction to a Voigt model of the same material.

The fractional derivative appears naturally in the behavior
of real materials. Thus, there is some basis for suspecting that
the utility of constitutive relationships involving fractional
derivatives for describing the behavior of real materials may
not be just a happy coincidence.
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Applications of Fractional Calculus
to the Theory of Viscoelasticity

R. C. Koeller

Department of Mechanical Engineering,
University of Colorado,
Denver, Colo. 80202

The connection between the fractional calculus and the theory of Abel’s integral
equation is shown for materials with memory. Expressions for creep and relaxation
Junctions, in terms of the Mittag-Leffler function that depends on the fractional

derivative parameter f3, are obtained. These creep and relaxation functions allow
Sor significant creep or relaxation to occur over many decade intervals when the
memory parameter, {3, is in the range of 0.05-0.35. It is shown that the fractional
calculus constitutive equation allows for a continuous transition from the solid state
to the fluid state when the memory parameter varies from zero to one.

1 Introduction

Volterra [1, 2] was an early contributor to the study of
materials with memory and was a major contributor to the
theory of integral equations that is associated with
viscoelasticity. The association and exploitation of integral
equations with viscoelasticity have been given by Rabotnov
[3]. Gurtin and Sternberg [4] use the concept of Stieltjes
Convolution in their review article on the linear theory of
viscoelasticity. The treatment of viscoelasticity as a model
made up of springs and dashpots is discussed in most books
on viscoelasticity [S-8].

The concept of using fractional calculus in the formulation
of constitutive equations for materials with memory has been
proposed many times during the last 60 years. A review of the
early contributors of the application of fractional calculus to
viscoelasticity has been given in a recent paper by Bagley and
Torvik [9]. In this paper they show that fractional calculus
models of viscoelastic materials are in harmony with the
molecular theories describing the behavior of viscoelastic
materials. A general fractional calculus polynomial operator
constitutive equation was introduced by Bagley [10] and
Bagley and Torvik [11]. They applied this fractional
polynomial operator equation to study damped structures and
showed that the motion of the structure can be determined
using a small number of empirical parameters. Roger [12]
extends Bagley and Torvik’s theory to include temperature
effects by means of the temperature shift function. He then
uses Bode diagrams to find values of the parameters of the
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complex modulus which is a ratio of polynomials of frac-
tional order in reduced frequency.

In this paper I will show the connection of fractional
calculus to the theory of linear viscoelasticity as well as
generalize some of the concepts of Rabotnov’s theory [3]. It
will be shown that Rabotnov’s theory of Hereditary Solid
Mechanics is equivalent to requiring that the stress in the
dashpot be proportional to the fractional derivative of the
strain in the dashpot. That is, the dashpot in the Kelvin-Voigt
and Maxwell models will be replaced by a fractional calculus
element, which I call the spring-pot. The spring-pot has the
property that its constitutive equation has continuity from the
ideal solid state to the ideal fluid state. These fractional
calculus models which are presented have corresponding
fractional calculus polynomial operator forms and hence can
be related to the general constitutive equation of Bagley and
Torvik [10, 11]. The method of integral equations used in this
paper leads to results that are expressed in terms of the
Mittag-Leffler function and has some advantages over the
method that uses Laplace transforms. The constitutive
equations obtained are within the modern theory of materials
with memory. Some of the applications for the use of these
fractional calculus models includes structural damping, soil
mechanics, material processing, polymer science, and the
determination of properties of biological materials.

2 Mathematical Preliminaries

In general the notation of Rabotnov [3] will be used.
Consider first some of the important results of the theory of
Volterra’s integral equation of the second kind with
parameter lambda. Volterra’s integral equation of the second
kind with parameter Ais given by [13-15].

H
: u(t)=U(t)+)\SOK(t,T)u(T)dT, 2.1
where u(¢) is the unknown function, v(¢) is the known
function, and K(¢,7) is the known kernal. With the in-
troduction of the Volterra operator K*, this mtegral equation
may be simply written as
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v=(1-N"u, 2.2)

where a Volterra operator K* is a mapping of functions into
functions defined as
!

K*u=SOK(t,T)u(T)dT. (2.3)
The function K(f,7) is called the kernal of the. Volterra
operator K*. In both (2.1) and (2.3) the lower limit of in-
tegration has been taken to be 0: however, any real number
may be taken as the lower limit in the theory of Volterra’s
integral equation of the second kind. It is easy to show that
the set of all Volterra operators form a linear vector space and
‘that multiplication of members of this space is given by

M*=K*L*, 2.4)
where the kernal M (¢,7) of M* is related to the kernals K(¢,7)
of K* and L(t,7) of L* by

¢

M= S K(t,5)L (s,7)ds. (2.5)
The solution to Volterra’s integral equation of the second
kind may be obtained by the method of successive substitution
and it is given by

u=[1+NN"*N]v, 2.6)

where

T*(N) =K* 4+ NK*2+ NK*3 4+ . NI+ 0 2.7)
The Volterra operator I'*(\) depends on the parameter A and
is sometimes called the resolvent operator of the Volterra
operator K*. The kernal of I'*(A) will be denoted by I'(A;#,7)
and it may be written out with the aid of (2.3), (2.4), (2.5) and
(2.7). The main results from the theory of Volterra’s integral
equation, which will be used in the subsequent analysis, are
now recorded. If I'*(\) is the resolvent operator of the
Volterra operator K*, then

(1= NK*) "L =1+AT*(N),
M) =K*(1-NK*)"1,
[ =AT*(W] ! =1+ N[*(A+p),

(2.8)

1
* (NI (w) = Py [N - T*(wl.

In what follows let « be a negative number between — 1 and
0 and let 3=1+ «, so that 8 is a positive number between 0
and 1. When the kernal K (¢,7) of the Volterra operator K* is a
singular kernal of the form

K({t,n=G{t,n)({—1% 2.9

then the corresponding integral equation (2.1) is said to be a
generalized Abel integral equation [15]. In particular, when
the function G(¢,7) is equal to the reciprocal of the Gamma
function evaiuated at 1+ «, the kernal K (¢,7) is called the
Abel kernal and the corresponding Volterra operator is called
the Abel operator. Following Rabotnov [3], denote the Abel
operator by I* and its kernal by

rh(t)
I'(l+a)’
where I'(x) is the Gamma function and A (¢) is the Heaviside
unit step function. The resolvent of the Abel operator I* will
be denoted by &% (A) and its kernal by &, (\;#). The kernal of
&% (N\) is called the fractional exponential function and it is
given by

—-1=a=0,

I.(t)= =a=<0,

(2.10)

* )\ntn(1+a)
B 00=1 Ly Sy

n=0

2.11D)

The Abel operator’s kernal is a difference kernal so that the

theory of viscoelasticity based on the Abel operator will be a
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nonaging theory. The Abel operator I? and its resolvent
&% (M) satisfy the general equations (2.8), that is

(A=A "'=14+NE%(N),
8L\ =I4(1 -\,
[1-X62 ()]~ =1+ A% (M p),

(2.12)

. | _
Ee(NEL ()= m[&’;()\) —&5 (W]

Additional relationships which will be used in the subsequent
development are
Ix,;l It:zf(t) = l*+o11 +a2f(t)s
D f() =15D" f(1), (2.13)

and

1
8;()\)h(t)=X[E,,()\tﬂ)—l]h(t), 2.14)
where D=d/dt, nis an integer, f(¢) is an arbitrary member of
the Heaviside class of functions, and E,z(x) is the Mittag-
Leffler function [16-18]. The Mittag-Leffler function is
defined by

* X!
Ez(x)=1+ _—, 2.15
g E, T'(1 + Bn) @19
and its asymptotic expansion {18, 19], is
x-n
Eg(x) ~— P e 2.16
’ L = @19

In particular, when ao=0 or 8= 1, the Mittag-Leffler function
is exp (x). Also for =0 the Abel operator is just integration
and when o= 1 it is the identity operator, that is

!
I ={ f(ndn, 150 =10, @.17)
To relate the fractional calculus to the theory of Abel’s
integral equation, a summary of some of the important results
of the fractional calculus [20-23] will be given. Integration of
fractional order 8 is denoted by the operator D~¢ and is taken
to be
t(t=7)f-t
Dty = S0 fran
o T(B)
A set of Riemann-Liouville fractional integrals are given in
Volume 2 of the Tables of Integral Transforms [24]. Since
B=1+ «, the fractional integral (2.18) is related to the Abel
operator I%(2.10) by

(2.18)

D8f (1) =13, f(1). (2.19)

Fractional differentiation for Be[0.1] may be defined by
[23,24]

DBf(t) =DDS-1£(1). (2.20)
Since B— 1 is negative it follows from (2.18) that
DS lf() = Sr U= @.21)
o I'(1-08)

so that fractional differentiation as defined by (2.20) is related
to the Abel operator by

Dﬁf(t)=DI*_5f(t) (2.22)
From (2.19) one finds
DAL f(1) =£(1), (2.23)

and hence DfI*=I*Df =1, if f(0)=0. This completes the
mathematical introduction to this paper.

I conclude this section with a summary of the constitutive
equations of the linear theory of viscoelasticity. Let o;; be the
cartesian components of the stress tensor and ¢; be the car-
tesian components of the infinitesimal strain tensor, then by
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the Riesz representation of linear functionals [4], the con-
stitutive equation for a nonaging linear viscoelastic material is

0 (£) = (Gyprdey) (£)
.

= S G

where = denotes the Stieltjes convolution and G, () are the

cartesian components of the relaxation modulus tensor. The
inverse relation of (2.24) is

e (8) = (Jyrdoy) (1)

t
=| " T t=ndoy (),

T)dey (1), 2.24)

ikt (E—

(2.25)

where Jy, (¢) are the cartesian components of the creep
compllance tensor. When og; and ¢; are members of the
Heaviside Class, then (2.24) and 2. 25) may be written as

0y (£) = G (0" degy (1)

! aGc ..
+ §0+ ek/(t—r)?ukl(r)dr, 2.26)
and
€ (8) =J (0" oy
! al .,
+] s oat=n S ik, @.27)

respecively. Equations (2.26) and (2.27) may be put into the
form of a system of Volterra’s integral equations if one in-
troduces the following notation

dG .
——kI(t) = N0 (1) G pra(0),

o (2.28)
and
dj ., .
% GKI(t) = = M (0K i (1) (2.29)

where K, () are the cartesian components of the difference
kernal of the integral equation and I'y, (f) are the cartesian
components of the resolvent kernal. Substitution of (2.29) and
(2.28) into (2.27) and (2.26), respectively, and rearranging
terms one finds

Gijk/(o+ e = (5ik5j1 -

AK™ k1) Ot .(2'30)

and
U,j= (6,;,6 +>\r‘lqu)quk’(O )G/d (2.31)

The creep function and relaxation function are related to these
kernals by

t
Jljkl(t) =J,»qu(0+ ) [:6pk6q1 - )\SO qu/(/ (T)dT] y (2.32)
and
t
Gijkl (t) = [aipﬁjq + )\SO P,‘qu (T)dT] qukl(o+ ) (2.33)

With the introduction of the tensors v=G (0% )eye; Qe s
u=a,~je,~®ej, K=K,‘jk[ei®ej'®ek®e/ and I‘=I‘,-jk,e,-®ej
®e, ®e, one obtains the tensor equivalent forms of (2.2) and
(2.6). Equations (2.2)-(2.8) remain valid in their tensor
equivalent forms. When one restricts attention to the isotropic
theory of viscoelasticity then one may express the constitutive
equations in terms of two scalar equations.
In what follows I simply write the constitutive equations as

0=G*de and e=J*do, (2.34)

or equivalently in terms of the corresponding Volterra
operators as

Journal of Applied Mechanics

o=G*é and e=J*g, (2.35)

where the correct interpretation of ¢ and e needs to be made.
For example, in the theory of isotropic viscoelasticity the
constitutive equations are [4]

S,_'/"—_G]*de,'j, (236)

where s;; are the deviatoric components of the stress tensor
and e; are the deviatoric components of the infintesimal
strain tensor.

The application of models made up of springs and dashpots
are useful in so far as they give a physical insight to the
response of viscoelastic materials due to an input of stress or
strain. It must be remembered that the phenomenological
foundation of viscoelasticity is based on the theory of
materials with memory. For the nonlinear theory it is based
on the Volterra-Frechet representation theorem of nonlinear
functionals, which in particular for the linear case, is the Riesz
representation theorem. These representation theorems do not
give explicit mathematical forms for the creep and relaxation
functions. The use of springs and dashpots will be generalized
to include fractional derivatives and fractional integrals. The
fractional derivative element, called a spring-pot, does not
have a mechanical interpretation at present, but it is useful to
delineate forms for the creep and relaxation functions. It is in
this spirit that I generalize the concept of models to include
elements that involve fractional derivatives and fractional
integrals. The creep and relaxation functions obtained are
generalizations of those obtained from the Kelvin-Voigt and
Maxwell models and they reduce to these classical results
when the parameter (3, called the memory parameter, is
chosen to be unity. Since differintegral operators of nonin-
teger order are linear functionals which possess the properties
of translation-invariance, nonretroactivity, and continuity it
is clear that differintegral operators are admissible in the
phenomenological theory of hereditary stress-strain laws.

ok = G rdeyy,

3 Creep and Relaxation Functions for the Fractional
Calculus Element

A fractional calculus element is defined as an element
whose stress is proportional to the fractional derivative of the
strain. Let F be the coefficient of viscosity for a dashpot
element and E be the modulus of elasticity for the spring
element. A fractional calculus element whose constitutive law
satisfies

a(t)y =Fp*D'tee(t), —~l=sa=0
or equivalently 3.1
o(t) =En®DPe(t), 0sf=<1

is said to be a spring-pot. In the foregoing, n=F/FE is a
characteristic time which will be called the relaxation time or
creep time depending on the specific model under con-
sideration. Equation (3.1) contains the two limit cases of a
spring and a dashpot, since

Lim FypeD'*ee(t) =Fp D% (t) =Ee(t)

a—-1

and 3.2)

Lim FpeD'*ee(t) =Fp®De(t) =Fé(t).

Thus the Oelement defined by (3.1) has the characteristics of
both a spring and dashpot, hence the name spring-pot. When
B=0 the material has perfect memory and when B8=1 the
material has no memory. For value of 8 between 0 and 1 the
material exhibits memory so that 8 may be considered to be a
nondimensional memory parameter. To find the relaxation
modulus for a spring-pot element set e(f) =h(t). The output
stress is the relaxation modulus G(¢) and it is obtained as
follows:
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G(t) =Fnf~'DPr(t)y =Fnf~'I* ;Dh(1)

¢ —) -8
=Fnﬁ_lliﬁ6(f)=Fnﬁ"lS0—(If—zli—)ﬂ)-—h(t-—’f)a(T)dT
=8
= FB-1 =~
=Fy F(l—ﬁ)h(t) EI_5(t/m), 3.3)

where 6(¢) is the Dirac delta function and use has been made
of (2.22), (2.13b), (2.10), and the properties of the Abel
operator. From (2.17b) it follows that 1/#°T(1 — ) has the
weak limit 6(¢) as B tends to one. A proof that the Riesz
distribution has as its weak limit the Dirac’s delta function is
given by Giittinger [25, p. 527]. Since 8= 1 + «, the relaxation
modulus of the spring-pot element reduces to that of the
dashpot element when o—0 and to the spring element when
oa— —1, thatis

Lim G(t) =Fé(¢)

a—0

and Lim (3.4)

o —

G(t)=Eh(1).
1

The strain-stress constitutive relationship for a spring-pot
may be obtained from (3.1) and (2.23), so that

ﬁ% I'o(t).

When o(¢) =h(t) the output strain is the creep compliance
that is denoted by J(¢), thus

: LLh(t)= _ Sl ksl

Fpe ™ ® FpeJo Tl +«)

h(t)

e(t)= 3.5)

h(t—ph(r)dr

( )ﬂh(t).

If the notation of the Abel kernal is extended to positive
values of the parameter o, then one may write

J(t) = ! I ( t)

= z1s .

The two special limit values of the dashpot and spring
elements are, respectively,

J(t) =

t
7

| 1
Eq'te T(1+a) T ET(1 +B)

tl+a

(3.6)

3.7)

and Lim

oa— —

. _t _1
fil? J(t)—-i,h(t) lJ(t)—Eh(t). (3.8)

The creep compliance of a spring-pot for various values of the
memory parameter (3 is shown in Fig. 1, while the relaxation
modulus is plotted in Fig. 2. From these figures it is clear that
a wide variety of responses can be obtained when the spring-
pot element is combined with either a spring element and/or
viscous element.

The fractional calculus representation (3.1) may be put into
a Volterra operator form by using (2.22), (2.13b), and the
definition of 5. This results in the following equality

(1) =FnP-1DPe(t) = EnPI3é(1). (3.9)

Gerasimov [26] has applied constitutive equations of the
Volterra type to the study of internal friction in materials,
Bland [6] states that the fractional calculus constitutive
equation was suggested by G. W. Scott Blair [27-31]. Scott
Blair’s format was not put into a form that would clearly
indicate the two limiting cases of a spring-pot. The fractional
calculus model was motivated by Nutting’s [32, 33] ob-
servation that the creep rate may be expressed as a simple
power law. Gross [34] took the creep compliance as a constant
plus a simple power law and then obtained, by the use of the
Laplace transform, the corresponding relaxation modulus
which he expressed in terms of the Mittag-Leffler function.
Slonimsky [35] and Smit and de Vries [36] introduce a model
which is an intermediate body between Hooke’s elastic body
and a Newtonian viscous liquid. They then extend their
fractional calculus model, which is a spring-pot, to in-
corporate a Kelvin-Voigt type body. Stiassnie [37] recently
looked into constitutive equations in the format as suggested
by Scott Blair. These fractional calculus equations are also
described in Bland [6, p. 54]. If one considers a chain of NV
parallel spring-pots with corresponding 4; =F;/E; and f;;
i=1,2, - - - N, with the property that the strain of all elements
is the same, then

N
a(t)= ), nfi~\F,Dfie(1). (3.10)

i=1

In the limit (3.10) becomes

1
o()={ E(B)n(8)17DPe(r)d. @.11)
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Equation (3.11) is a special case of a more general input-
output model proposed in [38]. Wainwright’s model for the
input x (¢) and the output y (¢) is

o

yn=|"

where G () may be continuous or may involve generalized
functions. Caputo [39, 40] and Caputo and Mainardi [41]
used operators with weighting functions similar to (3.11) or
(3.12).

In what follows the viscous element in the Kelvin-Voigt
model, as well as the Maxwell model, will be replaced by the
spring-pot. Results are then compared to previous proposed
fractional calculus models, as well as Rabotnov’s theory of
Hereditary Solid Mechanics.

_ G(B)DPx(1)dB, (3.12)

4 Fractional Calculus Kelvin-Voigt Solid Models

In the study of viscoelasticity the spring and dashpot
parallel model, known as the Kelvin-Voigt model, is often
used as a first approximation for the study of viscoelastic
solids. If the dashpot is replaced by a spring-pot, then the
Kelvin-Voigt model will be a fractional calculus model. This
model will be called the Kelvin-Voigt fractional calculus solid
model. Figure 3(q) shows this model where the spring-pot
element is displayed like a diamond as suggested by Bagley
and Torvik [42]. Since the Kelvin-Voigt model is a charac-
teristic creep model, let 7, = F/E be the corresponding creep
time when a=0. The stress is the same on both elements so
that one obtains

a(t) =Ee(t) +7,*FD'*e(¢)

ll+a)e(t).

One obtains the inverse relationship of (4.1) by using (2.23)
and the second of (2.12). Thus

=ETll+a(Dl+a+ 4.1
T

Iio(t) =Er, 1+a<1+ I*)e(t),

Journal of Applied Mechanics

E
o
Et®
a.)Fractional Calculus Kelvin-Voigt Model
E1Tp‘
b.)Fractional Calculus Kelvin- Voigt Chain Model

Fig.3 Fractional calculus Kelvin-Voigt solid models

so that

e(t)=

* 1 * !
1 [ ﬁ[a} U(t),
1

e,

where the result of Abel’s integral equation (2.126) has been
used. To find the creep compliance set o=#h(#) in (4.2) and
use (2.14) to obtain

o= 3o (£) o

When o=0 or 8=1, equation (4.3) reduces to the well-known
creep compliance of a Kelvin-Voigt model, namely

ETI
or

1
e(t)=E;l—58a<— 4.2)

(4.3)

1
I | = p-emmio, (4.4
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From (4.1) and (3.3) the relaxation modulus is obtained when
one sets e(t) = h(t) and o(t) =G (). The relaxation modulus
for a Kelvin-Voigt fractional calculus model is

G(1) =E[h(>t) +1_ﬁ(%)}

and this reduces to the classical results when the spring-pot
becomes a dashpot, that is

4.5)

G(1) ‘B_I = B[ (1) +7,8(D)]. 4.6)
It should be noted that the fractional calculus constitutive
equation (4.1) for the Kelvin-Voigt model may be put into the
form as given by Rabotnov [3, p. 93] if one uses (2.22) and

(2.13b), that is
o(t) =Ee(t) +Er PI* zé(1). 4.7

Consider now the general case of a Kelvin-Voigt chain
model, where the dashpots are replaced by spring-pots, as
shown in Fig. 3(b). Special cases may be obtained from this
generalized Kelvin-Voigt fractional calculus model by proper
selection of coefficients. Since Kelvin-Voigt models are
characteristic creep type models, let 7,=F,/E, be the
characteristic creep time of the nth chain, where F, is the
viscosity of the nth spring-pot as « tends to 0 and E,, is the
modulus of elasticity of the nth spring-pot as « tends to — 1.
E, is also the elastic modulus of the spring in the nth chain
and F,7,% =E, 7, is the portionality coefficient of the nth
spring pot. For this model the stress is the same in each of the
chains, while the total strain is the sum of the strains of the
chains. The strain in the nth chain is obtained by a similar
procedure as that for a single Kelvin-Voigt fractional calculus
model. With e, (¢) as the strain in the nth chain and with
corresponding change in the notation of (4.2) one finds that

WA

N
e(t) = "Z::Oe,,(t) =Y, 5 g;(_

P2 lﬁn )a(t).

where N+1 is the total number of chains in the model.
Equation (4.9) represents the strain-stress constitutive
equation for the generalized Kelvin-Voigt fractional calculus
model. The creep compliance for this model is
AR t\ Bn
o= 2 e [-(2)" T
() EO E a |~ (5 (1)
where Eﬁ (x) is the Mittag-Leffler function and when 8, =1
forn=0, 1 . N the classical results are recovered.
In order to have an initial strain due to a suddenly applied
stress set the first creep time equal to zero, so that (4.9)

becomes
1
e""[ * E E, T,,zsn i (=)o

Under specnal cases the inverse of this constitutive equation
may be obtained by the Laplace transforms method, or by use
of the multiplication formula (2.12d). Also (4.11) may be
expressed as a fractional polynomial operator acting on stress
which is equal to another fractional polynomial operator
acting on strain. For the case when N= 1, the inverse is easily
obtained with the aid of (2.12¢) and it is given by

a(l)=E, [1 - E,IE—T%S(’,“(—}II—B)]e(t),

4.9)

(4.10)

4.11)

(4.12)

where =03, =F,/E, and 1, is the relaxation time given by
P W— 4.13)
&1+ E,/E,

Hence the creep compliance and the relaxation modulus for a
three-element fractional calculus solid model are

1 1
e, (1) = — & (—-——)a(z‘). 4.8) W E N
= Er O\ 7 ()= o4 14 22 (5[ (5) [J{ro, @ie
Thus the total strain, which is the sum of the strains of the 0 ! i
chains is and
21
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Fig.4 Creep compliance for a three-element fractional calculus solid model
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E,/E,

G(t)=EyQ 1- —2—L_
(1) =Eo 1+E,/E,

(- (2) B

respectively. Equation (4.14) is equivalent to Rabotnov’s
natural approximation to the creep kernel by a fractional
exponential function [3, p. 87, and 79]. The fractional dif-
ferential equation associated with the three-element fractional
calculus solid model may be obtained from (4.12), (2.12),
(2.23), and (4.13). This results in the following fractional
differential equation

(ps+ %) o) =E,(D* + niﬁ)e(t),

for the three-element model. The creep and relaxation func-
tions have been obtained by the Laplace transform method in
Caputo and Mainardi [41] for a fractional differential
equation in the form of (4.16).

Equations (4.14) and (4.15) are plotted nondimensionally
on semilogarithmic paper for various values of 8 and for the
case E,/E, = 1. However, due to the form of (4.14) and (4.15)
these graphs may be scaled for various other values of E/E,.
Since the exponential function of negative arguments varies
significantly only over two decade intervals, it follows that for
modeling creep or relaxation data the classical three
parameter solid, that is the curve =1 of Fig. 4 or 5, will not
account for viscoelastic behavior that occurs over four decade
intervals. Other techniques, such as [43] may be used:
however, it should be remembered that relaxation and creep
times have physical meaning [44] and thus should be chosen
with care. It is seen from Figs. 4 and 5 that a three-element
fractional calculus solid model allows for significant creep or
relaxation to occur over many decade intervals when 8 is in
the range of 0.05-0.35. If the creep time 7, is equal to 1 sec,
then these curves represent the time interval from 1
nanosecond to 32 years. At present, the creep time defined by
the fractional calculus approach does not have physical
meaning and only when 8=1 does it have the usual meaning.
Initial reduction of oil shale data indicates that a three
element fractional calculus solid model gives very good
agreement with the experimental data.

(4.16)

Journal of Applied Mechanics

a.)Fractional Calculus Maxwell Model
E, Eq tf
AN {>—\
E, E tf
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b.)Fractional Calculus Maxwell Chain Model

Fig.6 Fractional calculus Maxwell fluid models

5 Fractional Calculus Maxwell Fluid Models

Rabotnov limits his discussion to viscoelastic solids, but it
is straightforward to extend the concepts to viscoelastic fluids.
First 1 will obtain the creep and relaxation functions for a
Maxwell model when the dashpot is replaced by a spring-pot
and then [ will discuss the generalization of this model. Figure
6(a) shows the fractional calculus Maxwell model where the
spring-pot element is displayed like a diamond. It is clear that
this model allows for an instantaneous response and a con-
tinuous flow. Since this model is a characteristic relaxation
model let ¢, = F/E, where F and E are the coefficients of the
spring-pot for its limiting values of a. Now for this model the
total strain is the sum of the strain in the spring and spring-
pot. From (3.5) the strain in the spring-pot is (1/Et,%)I*a (1),
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Fig.8 Relaxation modulus for a fractional calculus Maxwell fluid model

while the strain in the spring is o(¢) /E. Thus the total strain
for the fractional calculus Maxwell fluid model is

e(t)=}5(1+7%13>o(t). 5.1
The inverse relationship of (5.1) is obtained from (2.124) with
A= —1/t,% and it is given by
1
(—-t?)]e(t).

From (5.1) one obtains the creep compliance and from (5.2)
the relaxation modulus is obtained. With the aid of (2.10) one
finds for the creep compliance the formula -

1
1-— &%

o) =E[1-— 52)
1
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1 1 L\ A
and from (2.14) the relaxation modulus is
N\ B
G(t)=EE;| —{ — h(t), 5.4
g Al (tl)]u (5.4)

where B=1+a.
Figure 7 shows the creep compliance for a fractional
calculus Maxwell fluid model. It is clear that for this model
_the creep compliance is the sum of the creep compliance of the
spring and spring-pot and hence this figure is the same as Fig.
1 except that the nondimensional creep functions differ by
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one. Since J(¢) and G(r) are Stieltjes inverses the relaxation
function does not tend to infinity as time tends to zero. Figure
8 shows the relaxation modulus for the model under con-
sideration. Its nondimensional relaxation modulus is just the
Mittag-Leffler function evaluated at the value —x?. The
results just obtained are equivalent to the results obtained by
Gross [34] since he assumed a creep function in a format
similar to (5.3).

Figure 6(b) shows a fractional calculus Maxwell chain
model where the spring-pot elements are displayed like
diamonds. The strain in each of the fractional calculus
Maxwell elements is the same, while the stress is the sum of
the stresses of the Maxwell elements. Hence, it follows that

4 1 1
a(t)=nz=:0E,,[1— tn—ﬁnsgn[— (tn—ﬁn)]e(t), (5.5)
and that the relaxation modulus is
N
t\ B
G(t)= Y, E,E,, [— <T> ]h(t). (5.6)

n=0 n

Under special cases the inverse relation may be obtained in a
manner similar to the classical theory of the Maxwell chain
model. It is clear that many more creep and relaxation func-
tions may be obtained for other fractional calculus models. In
particular the fractional calculus model consisting of a
fractional calculus Maxwell element in series with a fractional
calculus Kelvin-Voigt element should be an excellent model to
describe primary and secondary creep of materials.

6 Conclusions

Rabotnov’s theory of Hereditary Solid Mechanics has been
generalized and its relationship to the fractional calculus has
been shown. Creep and relaxation functions for various
fractional calculus models have been obtained and these
functions are very useful in the reduction of creep and
relaxation data. The fractional calculus basic element, which
is the spring-pot, allows for the continuous transition from
the fluid state to the solid state. The spring-pot is combined
with springs and its relationship with the fractional
polynomial operators is discussed.
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Sliding Interface

It is found that when an ellipsoidal inclusion undergoes a shear eigenstrain and the

inclusion is free to slip along the interface, the stress field vanishes everywhere in the
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inclusion and the matrix. It is assumed in the analysis that the inclusion interface
cannot sustain any shear traction. There exists a shear deformation that transforms
an ellipsoid into the identical ellipsoid without changing its orientation (ellipsoid
invariant transformation). This is not true, however, for a spheroidal inclusion.

The amount of slip and the associated stress field are calculated for a spherical
inclusion for a given uniform eigenstrain €.

1 Introduction

An inclusion is defined as a subdomain Q in domain, D,
where eigenstrain (stress-free transformation strain, misfit
strain, nonelastic strain) €}; is given in Q and is zero in D~ Q.
The elastic moduli in € (inclusion) and D—Q (matrix) are
assumed to be the same.

Most of the inclusion problems solved by Goodier [1],
Edward [2], Eshelby [3], Willis [4], Kinoshita and Mura [5],
Yang and Chou [6}, among others, assume the continuity of
displacement at the interface of inclusion (perfect bonding).

This condition of perfect bonding is sometimes inadequate
in describing mechanical behavior of inclusions. Inclusions in
high-strength steel, for instance, are easily debonded by a few
cyclic loadings. Grain boundary sliding in polycrystals and
granular media can be observed even at room temperature.

When sliding is allowed along the inclusion interface, the
well-known solution of Eshelby [3] must be substantially
modified. To the authors’ knowledge, no conclusive research
has been reported about this sliding inclusion.

In this paper we report a striking result of a sliding ellip-
soidal inclusion under a shearing eigenstrain and a result for a
sliding spherical inclusion under more general eigenstrains.
The conditions for continuity of the normal traction and the
normal displacement at the interface are imposed in analysis
and the shear stress along the interface is required to vanish.

2 Statement of the Problem

Consider an isotropic and infinitely extended elastic body,
containing a uniform (constant) eigenstrain ¢} in an ellip-
soidal subdomain 2 bounded by
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x3/at+x3/a3 +x3/ak=1. 1)

We investigate a solution of the elastic field when sliding takes
place along the inclusion interface. The equations of
equilibrium for the stress tensor are

Oijj = 0 inD. (2)
Hooke’s law is
0 =Cxr (Ui —€k1) » (3)

where e}; =0 in matrix D— Q. The condition for continuity of
the traction on the inclusion interface S is
[O','j]nj=0 on S, (4)

where [o;]=o;(out)—o;(in) and n; is the outward unit
normal on S. The continuity condition for the normal
displacement on S is

[u;ln;=0 onsS. ()]

The condition for vanishing shear stress on S is
oyh;—apnnn;=0 ons, (6)
o;n;=ahn; ons, (6a)

where «a is a variable scalar.
The slip on S is expressed by a vector b;,

bj=~—[u;] onS. N
The solution for the system of equations (2)-(6) tends to zero
at infinity.
3 Uniqueness of Solution

Uniqueness of the solution for (2)-(6) is shown. Suppose
that two solutions u}, u?, for displacements and ¢}, o% for the
corresponding stresses exist. Then, we have, for Au; = u} —
u?, Aoy = o}j - 0,21-,

Agy; =0, @y

3

AUU = C,-jk,Auk,,,
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[Ag;ln; =0 on S, @)’
[Au;ln; =0 ons, 5)’
Aojn;=Aan; onS (6a)’

and Au; =0 at infinity. Consider positive-definite volum
integrals, .

IESQ AaijAui‘idD-*-SD—ﬂ AO'UAu,JdD (8)

When 7 is transformed by Gauss’ theorem to surface integrals,
we have

I= S Aoy AupnydS+ S | B by, ©)

aD-0
where Q0 and 3(D— Q) are the boundary of { and the inner
boundary of D—, both of which are equal to S, and #; is the
respective outward unit normal. From (4)’, I is written as

I=— San Aoyn;lAu;ldS. (10)
Finally, conditions (6a)" and (5)’ lead to
I= —S s Aan;[Au;}dS=0. (11

Since (8) is positive-definite for Ac;, we conclude that

) S
0jj = Ojj-

4 Somigliana’s Dislocations

The shear stress on the inclusion interface in Eshelby’s
inclusion is relaxed by interface sliding (Somigliana’s
dislocation). Therefore, the solution for (2)-(6) is the sum of
Eshelby’s solution and Volterra’s solution obtained by
Somigliana’s dislocations distributed on S, where the
dislocation density is ; given by (7).

Eshelby’s solution (perfect bonding) is (dx’ = dx| dx; dx5)

9
W (== 5 || Gy (x=x) Gl (6" a2
and Volterra’ solution (sliding) (Mura 1982, p. 39)is
9
uf (9= 5= | Gy (=X )Cpnby (xS, (13)
X, JS

where G (x—x") is the Green’s function of elasticity. The
solution is the sum,

ui=uf+ul. (14)

where b, on S is properly chosen, u; can satisfy conditions
(2)-(6). Following Asaro [7], the function b; in (13) is ex-
tended to inside . Then, Gauss’ theorem leads to
a
uf (0= 5 | Gyx—X)Cpanby (X)X +B,0,  (15)
axk Q
where the property of the Green’s function,

C[mjkGij,km(x_x/)= —8;6(x—x") (16}
is used. §(x—x’) is the Dirac delta function, and §; is
Kronecker’s delta. The stress corresponding to u/} is obtained
from

Gi[,{:C,'jk[u/K[. (17)
The stress in & corresponding to u¥ is
0§=Cuk1(uf,l“el:1)- (18)

The solution for stresses is obtained as the sum, o;; = of + o,
These stresses (17) and (18) are written from (12) and (15) as

Journal of Applied Mechanics

o)== Cutal | Coromehi )G (x—x")aix’ + 9},
' 19
of ()=~ Cijk/{Sw Cogmn€mn (X )Gip,q (X —X")dX" + €y (X)}’
(20)
where
ey = —(L/2(biy+ ;1) @b

When b;, which is orTginally defined on S, is extended into Q,
the impotent components (Furuhashi and Mura 1979) are
excluded. These impotent components vanish on S and take
arbitrary values in { but do not contribute any stress field.
The stresses expressed by (19) and (20) satisfy the con-
ditions (2) and (4). It is also known that uf is continuous
through S so that [uf]=0. Therefore, u; expressed by (14)
satisfies condition — [u;]=b,;. We have to choose b; such that

bn;=0 onS (22)

and o;; = o} + o}, satisfies condition (6) or (6a).

5 Special Cases
Shearing Eigenstrains. Observing (19)-(21), we realize that

if
e +ei*=0, (23)
o, = of + o} = 0. Therefore, condition (6) is satisfied.
For an arbitrary but uniform e}, (23) leads to
b =elx; — wyx;, 24)

where w; is a rotation and w;= —w;. Unfortunately, con-
dition (22) is not generally satisfied by (24). Expression (24)
does satisfy (22), however, under a special configuration when
uniform shear eigenstrains (¢} =0 for i=/) are distributed in
an ellipsoidal domain with no degeneracy (a, #a, #a;).

When (24) is substituted into (22), we have

{eh(1/a} +1/a3) ~ w,(1/a} —1/a3) }x,x,
+ e (U@ +1/ad)
s (1@~ 1/a2) )33, + (€5 (1/d% + 1/a3)
— w3 (/@ = 1/a3) ) Xy, =0 25)

For an arbitrarily given ¢} there exists a set of solutions for
w;;, where a; #a, #a;,

W, =eh(1/a3 +1/a3)/(1/a% — 1/a3)

wy =eh (1783 +1/a})/ (/a5 —1/a}) (26)
wy =eh(1/a3 + 1/a)/(1 /a3 — 1/a})
When (26) is substituted in (24), we have
by =2x,a%eh/ (@} — a3) - 2x;ateh /(af —ap),
b, =2x3a3€e3;/(a} — a3) — 2x, a3 ety /(af —ad), @n

by =2x,djeh /(a3 —a})—2x,d5 3,/ (a5 — a3).

Therefore, it is concluded that for uniform shear eigenstrains
a sliding ellipsoidal inclusion causes no stress field.

This means that the misfit caused by €} in Eshelby’s in-
clusion is completely relaxed by the interface sliding given by
(27). The displacement is obtained from (14) with (12), (15),
and (24) and it is #; = b;. It means equivalently that the shear
deformation given by (27) transforms the ellipsoid (1) into the
identical ellipsoid. Suppose that point (x,,x,,x3) is trans
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formed into point (x{,x§,x;) by the displacement given by
(27). Solving x; in terms of x/ from

x/ =x,'+b,' (28)
by using (27) and substituting into (1), we have
(/)2 /a} + (3 Y2/ ah + (xy)2 /a5 =1 29)

when higher order terms than e} are neglected (linear
elasticity). This rather striking fact is reconsidered for the
two-dimensional case, where €% =0 and b; =0. When (28) is
solved for x;, we have

X1 =x{ —x;2ately/ (at - a)

X, =x{2a5¢l/ (@} —ad) +x; (30)
Substituting (30) into x/a} + x3/a3 = 1leadsto
e/ at +x72/a3)/(1 + A%) =1, (31)
where
A? =4ataj(eh)?/(af — a3)*. (32)

The ellipse x}/a? + x3/a% = 1 expands uniformly by shear
deformation without changing the shape unless A2 is
neglected. Otherwise the concept in linear elasticity that no
shear deformation causes a volume change of material does
not hold. However, the magnitude of ¢}, has a limitation so
that the linear elasticity may hold. The limitation is given by
the inequality

datad(eh)*/(a} —a3d)?* < <1 33)

The solution (27) is an exact solution in the framework of
linear elasticity which requires e}, to be subjected to the
restriction given by (33). e}, under this restriction depends on
(a,/a,). For a sphere, for instance, e} must be infinitely small
(namely zero).

Under (27) the ellipsoid (1) restores the shape and orien-
tation by rotation (26) after displacements of material points.
This is not, however, the case of a sphere that is always
deformed to an ellipsoid by shear. The restoration of the
sphere shape is impossible by rotation. In these cases of
degeneracy of ellipsoids (spheroidal and sphere), non-
vanishing stress fields are left in the material after slight
relaxation by the interface sliding.

Spherical Inclusions. Ghahremani [8] obtained the solution
for an isotropic elastic medium, containing a sliding spherical
inhomogeneity, subjected to uniform tension at infinity. Since
we are interested in the anomaly of a spherical inclusion, as
mentioned in the last section, the following problem is in-
vestigated.

Consider a uniform otherwise general eigenstrain ¢*; in the
domain bounded by S,

(34

where a is the radius of the sphere. The sphere can slide and

xix;=a?,

310/ Vol. 51, JUNE 1984

the shear stress at the interface vanishes. Since n;=x;/a on S,
equation (6) becomes

(3%

The interface shear stress found in Eshelby’s inclusion is
relaxed by sliding b; along the interface. Then, b; will be

oijxjaz = O XXX =0.

‘proportional to the shear stress in Eshleby’s inclusion.

Therefore, it is natural to assume that b; has the same form as
the shear,

(36)

where Bj; are symmetric unknown constants. It is easily seen
that condition (22) is satisfied. After tedious calculation for
(19) we have found that condition (6) is satisifed when
_ 14(7-5y)
VT 325 -20)a?
where v is Poisson’s ratio. Eshelby’s solution 05 in Q given by
7—5p Sv+1
=2 )

PTTASA ) TR s )
where p is the shear modulus. ¢/ in Q is a polynomial of the
second degree of coordinates, where (19) is evaluated by using
(21) and (36) with the result of Asaro and Barnett [7] or Mura
and Kinoshita [5]. The final expression for 0,5{ is so long to
write down that it is omitted here.

For more general cases where the inclusion is ellipsoidal and
eigenstrains are of nonshear type, a competely different
approach by the use of Boussinesq methods is convenient.
Some results along this line will be reported in a separate
paper.

- 2
b,‘ —B,'ija —Bjkxkax,'

@37

(38)

6,]- E;k )
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Conditions of Slip and Stick
Caused by a Surface Normal

A solution is given for the elastic stress field in a half plane containing a plane crack
parallel to the surface and subjected to a uniform normal pressure and a con-
centrated normal load. Frictional slip according to Coulomb’s law is permitted
between the crack faces. As the load is increased, a slip zone originates and grows
either from a crack tip or from an intermediate point. Various arrangements of slip

and stick zones can occur depending on the magnitude of the load and its location
relative to the crack. At very high loads, the crack faces start to separate, but this
case is not treated in the present paper.

Introduction

The phenomenon of surface slip due to static and moving
surface loads has been studied in a series of publications
[1-5], which considered the problem of an elastic layer
pressed on an elastic substrate. This geometry approximates
the contact problem for cylinders with shrink fitted tires. In
particular, the results of [5] can be compared with ex-
perimental data obtained by Anscombe and Johnson [6] on
the rolling of two steel cylinders, one of which is fitted with a
steel tire.

A related problem of interest concerns the propagation of a
crack parallel to the surface of a solid due to a series of
moving loads. Railway wheels, rails, and other surfaces
loaded in rolling contact are prone to *‘spalling failure’ in
which a subsurface crack propagates parallel to the surface
until eventually a thin plate of material is detached, Hundy
[7]. The propagation process depends on the stress intensity
factors at the crack tips and these will be in turn influenced by
frictional contact between the crack faces during the loading
cycle as a moving load passes overhead.

In this paper we consider the static situation as a
preliminary study to the inherently transient problem of the
moving load. When the load is sufficiently high, we find that
slip occurs between the crack faces in either one or two zones
whose location depends on the position of the load and the
extent of the crack. If the slip zones extend to one or both of
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Fig.1 Geometry of the problem

the crack tips, singular shear tractions are developed ahead of
the tip giving a mode 7 stress intensity factor. Otherwise, the
stress field near the tips remains bounded and the frictional
contact between the faces inhibits crack propagation. Un-
fortunately, there are as yet no experimental data with which
these results can be compared.

Formnulation

Consider the geometry of Fig. 1. A crack of length L, — L,
is located at depth a parallel to the surface of an elastic half
plane. A compressive force P and a uniform pressure p, are
applied on the surface of the half plane. In this analysis, the
coordinate system is defined so that the force P acts at the
point (0, a), while the location and extent of the crack are
considered variable, i.e., the parameters L,, L, may take any
(including negative) values. The force is allowed to increase
monotonically in magnitude. The faces of the crack can
transmit frictional forces and Coulomb’s law of friction is
assumed,

As long as the crack faces remain in conditions of stick, the
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Fig.2 Arrangements of slip zones (mirror images not shown)

Flamant solution [8] is valid and the tractions on the plane of
the crack are

2P a’x
gy (x,0)= T (@) O
2P 2
Tyy (x90)= —Po— (2)

T (@ +x?)?
The limiting case of a crack extending from — oo to + oo is the
problem of the layer pressed on a substrate treated in [1]. In
this case, slip starts at the two symmetric locations x* and —
Xx* where

x* 1 1/2

— =§[(3 +411)'2 +2f] 3

when the load P reaches the critical value P* given by
P* 8af [f(3+4/2)2 +3+272)
poa  27[B+4D-f]

where f'is the coefficient of friction. As the force is increased,
the two symmetric slip zones expand in both directions. The
ends of the slip zones furthest from the load expand faster
than the near ends. The extent and location of the slip zones
versus the dimenionless load parameter P/p,a is given in Fig.
6 of [1] for various coefficients of friction. This problem can
be used for guidance in the various slip configurations
associated with localized slip of the finite extent crack,

Depending on the location of the point Ix*| in relation to
the finite crack we may distinguish the following cases:

“

312/Vol. 51, JUNE 1984

I. —x*<x*<L,
II. —x*<L;<x*<L,
HI. L, <—x*<x*<L,

There are three more cases symmetric to the foregoing, which
correspond to mirror image slip configurations and are not
considered separately.

Case 1. As the load is increased from P*, slip starts for
some value P > P* at L, leading to the arrangement of Fig,
2(a), where slip occurs in the interval b < x < ¢, where b =
L,. As the load is increased further, the slip zone is expected
to expand until it reaches the end point L,. The entire crack is
then under condition of slip, Fig. 2().

Case I1. A slip zone detached from the crack tips appears
first in the vicinity of x*, Fig. 2(c). As the load increases, the
slip zone spreads and it eventually reaches the left or right tip
depending on the relative location of x*. The arrangement of
Fig. 2(a) or its mirror image results. It is also possible to arrive
at configuration Fig. 2(e) if L, < 0.

Case III. When both points |x*| are inside the crack
extent and L, < 0, two detached slip zones appear, symmetric
about the origin, as shown in Fig. 2(d). As long as slip does
not reach the crack tips, their location is immaterial and the
situation is identical to that described in [1]. For a finite
crack, slip will eventually reach one of the crack tips first,
depending on the location of the points |x*|. We then have
the arrangement of Fig. 2(e) or its mirror image. As the load is
further increased, slip penetrates the other crack tip, too, Fig.
2(H.

The analysis follows closely that of [1-3] and only the main
steps will be presented here for easy reference. The tractions
on y = 0 can be expressed as a sum of two terms. The first
term is due to the surface load (Flamant solution and uniform
compression) and the second is a corrective solution, the
purpose of which is to account for the slip zone(s). The
corrective solution is obtained as a distribution of edge
dislocations of the glide type with density B{(x). The
possibility of separation (which would require a distribution
of climb edge dislocations) is not included in the present
formulation. Accordingly, the normal N(x) and shear S(x)
tractions become

2P a 2u
N(x)——Po_ “7: (az +x2)2 + 7l'(K+1) SI‘B(E) Kn(xﬂg)dg
(%)

2P dx 2u
S =" S T(K+1)SFB<5)KS(x,s>ds ©)
where
8a® a?
K,,(x,£)=F<—3+l6ﬁ) %)
1 x—£ 124> 64a*

K’(x’g)"x—f R? (_H R R ) ®)

Ri=4a>+(x—¢)? ®

. is the shear modulus and x = 3 —4v for plane strain, » being
the Poisson’s ratio. The range of integration T is the union of
the slip zones (interval (b, ¢) or (b5, ¢,) and (¢, b;)).

Guided by the Flamant sclution, we anticipate positive slip
for x > 0 and negative slip for x < 0. We can then express
Coulomb’s law in the slip zones(s) as

S{x)=—fsgnxN(x)
N(x)=0

inl

inT

(10)
3]
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Fig. 3 Dimensionless load versus slip zone location for the
arrangements of Fig. 2
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Fig. 4 Shear tractions for arrangement (b) with bla = 1.5,¢la = 2.3, \
= 13.98
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Fig. 5 Shear tractions for arrangement (b) with b/a = 1.5,cla = 2.3, A
=15
where f is the coefficient of friction. For each slip zone we dh _
. . . . . — =-—B(x) (14)
must require that there is no net dislocation left behind or dx

|, B.wyag=o, i=1,2 (12)
We must also verify that [1]
sgn S(x) =sgn A (x) (13)

where A(x) is the tangential. shift defined as the difference in
the tangential displacements on the surfaces y = 0* andy =
0~ . Itis also noted that
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In the stick zones that may develop along the crack, we
require

N(x)=<0 (15)
IS(x)l < —fN(x) 16)

Asymptotic analysis has established the behavior of B(x) at’
the end points, which is consistent with the boundary con-
ditions of the problem including the inequalities [9]. Thus
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Fig.6 Normal tractions for arrangement (b) with bfa = 1.5, ¢la = 2.3, A

= 13.98
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Fig. 7 Shear tractions for arrangement {c), bla = 0.6, cla = 1.74, A =

8.22

B(x) is square root singular at the end points marking
transition between slip and undamaged material and it is
bounded at the transition between slip and stick. When B(x)
is required to be bounded at both ends, as is the case for a
detached slip zone, a consistency condition must be imposed
on B(x). This consistency condition is automatically included
in the discretized system of equations obtained by the
numerical method for singular intergral equations of Erdogan
et al. [10], which is employed here. For details of the ap-
plication of the method to the present problem, the reader is
referred to [1-3]. _ i
We note that for the arrangement of Fig. 2(a) there is only
one unknown parameter, c. For Fig, 2(b), there are no

3141/ Vol. 51, JUNE 1984

unknowns and for Fig 2(¢) and 2(d) b and ¢ are unknowns.
For Fig. 2(e), b,, b;, ¢, are unknowns and for Fig. 2(f) b, and
b, are unknowns. In all arrangements, except that of Fig.
2(b), one of the unknowns can be replaced by the load
parameter

(18)

to simplify the numerical procedure. For instance, in the
arrangement of Fig. 2(a), ¢ was specified and A\ was com-
puted. In the arrangement of Fig. 2(c ), b was specified and A
and ¢ were computed, etc.

Results for the mirror image arrangements are - not
presented. '

)\=P/p0a
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Fig. 9 Shear tractions for arrangement (c) at the onset of separation;

bla = 0.19, cla = 30.5, A = 563

Results

The results are summarized in Fig. 3 which gives the extent
and the location of slip zones for a given value of the loading
parameter A and for f = 0.5. The two thick curves correspond
to arrangement (d) and coincide with Fig. 6 of [1]. In this
discussion, letter designations for slip arrangements
correspond to those shown in Fig. 2.

Arrangement (a) is exemplified by a crack that starts at x =
1.5a (L, = b = 1.5a). Slip starts at the crack tip L; when
P/p,a = 8.3 and extends to the right with increasing load.
Eventually, the slip zone will extend to the right crack tip L,,
when transition to case (b) occurs. At this point, the shear
stress intensity factor ahead of L, is still zero, Fig. 4. If the

Journal of Applied Mechanics

load is increased further, the shear tractions become singular
ahead of L,, Fig. 5. In both cases, the shear tractions are
singular behind L,. The corresponding normal tractions are
practically the same as for the Flamant solution and are
shown for one case in Fig. 6.

In arrangement (c) we start with one slip zone which is
detached from the crack tips. The extent of the slip zone in
this case differs only slightly from the right-hand zone in
configuration (d) and the corresponding curve cannot be
distinguished from the thick line in Fig. 3. With further in-
crease of the load, slip reaches one of the crack tips leading to
arrangement (a) or its mirror image. The case where the slip
zone reaches the left tip first is illustrated in Fig. 3for L, = b
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Fig. 10 Normal tractions for arrangement (c) at the onset of
separation, b/la = 0.19,c/a = 30.5, A = 563

= 0.75a. For this case, the right end of the slip zone ¢ con-
tinues to follow curve (d) closely.

The configuration 2(e) must be preceeded by (d) if L, < —a
or by (¢) if L, > —a. In the former case, the point b, is very
close to the left curve (d), while in the latter it falls inside this
curve. In both cases, the curve for the right slip zone prac-
tically coincides with 2(d). Examples are shown with L, = —
2gand L, = —0.9q.

Finally, an example for the arrangement (f) is shown with
Ll = — 1.3(1 ansz = O.9a.

The biggest deviations in the extent of the slip zones from
curve (d) occur when the slip zone grows outward from a
crack tip as in cases (@), (), of Fig. 3.

An example of shear and normal tractions is given in Fig. 7
and 8 for arrangement (¢) and b = 0.6a. Note the influence of
the slip zone on the shear tractions. The normal tractions are
not much affected by slip and are approximately equal to the
Flamant tractions. The location of the left crack tip can be
arbitrary provided it does not extend beyond the point marked
L, at which transiton to arrangement (e) occurs.

When the load is very high in comparison with those shown
in Fig. 3, the inequality (11) is violated, indicating the oc-
currence of separation, and the present analsyis is not valid
without modification. Here, we only note the conditions at
the onset of separation. For example, with arrangement (c)
separation starts approximately at the point x = 3.8a for A\ =
563 with & = 0.188« and ¢ = 30.5a. The corresponding shear
and normal tractions are shown in Fig. 9 and 10.

In arrangement (e) separation was observed for A = 597 in
the vicinity of x = 3.8a corresponding to b, = 0.205¢, ¢, =

30.5a, by = —0.37a and ¢, = —2.2a. In arrangement (f)
separation occurred for A = 483 at x ~ 3.74 and for sym-
metric slip zones b, = —b; = 0.265a, ¢, = —c¢; = 23a. In

arrangement (d) separation also starts for approximately the
same parameters.

In arrangement (b) the load at which separation starts
depends on the location and crack extent. For example, for b
= 0.4a and ¢ = 3a separation starts at x = 0.298a with A =

316/ Vol. 51, JUNE 1984

222, while for b = a and ¢ = 5a separation starts at x = 4.39a
with A\ = 235,

The case of p, = O corresponds to A = oo, It cannot be
examined with the present formulation because of the
presence of separation. For arrangement (d), which is
equivalent to a layer resting on a substrate, the slip zones
become very large in the limit A = oo and an increasing
number of collocation points is required for convergence. For
these reasons, the case of zero precompression is not
examined here, but it will be considered in the future.
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The mechanics of subsurface crack propagation in sliding wear of elastoplastic
solids was investigated using the finite element method. The subsurface cracks,

which experience both compressive and tangential loading, propagate along the
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direction of maximum Shear stress and grow in a ductile manner due to plastic
deformation of the crack tips. Based on the assumption that the crack growth rate is
equal to the crack-tip sliding displacement, the wear rate was predicted for the case
of crack propagation controlled delamination wear which compares favorably with

the experimentally determined wear rates. According to the FEM results, linear
elastic fracture mechanics (LEFM), which was previously used to determine the
wear rate, is not an appropriate method of predicting the wear rate because of the
large plastic deformation at the crack tip.

1 Introduction

Since the delamination theory of wear was introduced by
Suh [1], extensive experimental and analytical work has
substantiated the theory, showing that wear sheets in sliding
wear are indeed formed as a result of subsurface deformation,
crack nucleation, and crack propagation. In developing a
quantitative model for delamination wear of two-phase
metals, crack propagation was shown to be the slowest or rate
controlling process among the steps involved in the
delamination processes [2]. Since then, the mechanics of crack
propagation in sliding wear has been investigated extensively.

Fleming and Suh [3] analyzed the propagation of a sub-
surface crack parallel to the surface using a linear elastic
fracture mechanics (LEFM) approach. This treatment was
based on the assumption that only the crack tip behind the
moving asperity extends due to cyclic loading since the crack
tip in front of the asperity contact is closed due to the com-
pressive normal stress, while the trailing tip of the crack
behind the moving. asperity contact is in the elastic region
subjected to tensile stress. The stress intensity factors at the
trailing crack tip due to an elliptically distributed load acting
at the asperity contact were calculated using an approximate
method based on weighting factors. The stress intensity
factors for Mode I and Mode I7 computed in this manner were
very small, being less than the threshold stress intensity
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factor,. although the stress intensity factor for Mode IT was
about an order of magnitude larger than that for Mode I.
Essentially similar results were obtained by Hills and Ashelby
[4], Rosenfield [5], and Keer et al. [6], although they com-
puted the stress intensity factors at both ends of the crack
using either different boundary conditions or different
methods. The major shortcoming of these works is the use of
linear elastic fracture mechanics when the actual plastic zone
surrounding the crack tip is large extending to the surface,

Recently, Rosenfield [7] applied the dislocation model of a
shear crack, which was originally developed by Bilby, Cot-
trell, and Swinden [8] to account for the plastic deformation
at the crack tip. This model suggests that wear rates are
controlled by the crack-tip sliding displacement and predicts
that there may be crack growth when the friction between the
opposing faces of the crack is not too large. The shortcoming
of this model is that it assumes a uniformly distributed load
on the wear surface, which does not approximate a typical
sliding situation.

Our understanding of the mechanism of crack propagation
has improved as a result of these extensive analytical studies.
However, results of the linear elastic fracture mechanics
(LEFM) approach has only limited use. The purpose of this
paper is threefold:

(a) To show that the crack propagation in delamination
wear cannot be explained by LEFM because of the large
plastic zone at the crack tip.

(b) To critically investigate the criteria for crack growth
and the direction of crack extension under sliding conditions
which involve both compression and shear loading.

(¢) To predict the rate of crack propagation in sliding wear
through the elastoplastic finite element analysis of the crack
tip sliding displacement (CTSD).

JUNE 1984, Vol. 51/ 317
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Table 1 Stress intensity factor range, AK,, (MNm ~¥2), at
left and right tips for a small crack (¢ = 1/4a)

d/a 15 .0.25 0.5 1.0
Left 1.05 1.07 1.44
0.3
Right 1.28 1.34 1.44
Left 1.08 1.11 1.15
0.5
Right 1.35 1.40 1.49
Left 0.67 0.68 0.70
1.0
Right 0.89 0.94 1.06
@ = half length of asperity contact
¢ = halflength of crack
d = depth of crack location
u = coefficient of friction

Before we proceed it should be mentioned that there are
certain limitations to the present FEM analysis of wear.
Normally, the wear surface is severely work-hardened and
there is an extremely severe strain gradient normal to the
surface. In addition, the near-surface material is highly
anisotropic. None of these factors are considered in the model
due to limitations of our present knowledge.

2 Remarks on the Previous Crack Propagation Studies

The most controversial aspect of crack propagation studies
of the past is the use of LEFM and the boundary conditions.
Since a number of conclusions have been drawn based on
these studies, the controversial points will be reviewed before
discussing the results of the finite element analysis of crack
propagation in elastoplastic solids.

2.1 The Limitations of the Linear FElastic Ap-
proach. Linear élastic fracture mechanics (LEFM) has been
used to predict the rate of crack propagation under cyclic
loading. The prerequisites are that the change in the stress
intensity factor be larger than a critical value called the
threshold value and that the plastic zone at'the crack tip be
smaller than a critical dimension of the part. When the plastic
zone size at the crack tip is so large that it extends to a stress-
free boundary the stress intensity has no longer any physical
significance. )

The calculated stress intensity factors reported to date [3-6}
for sliding wear are less than the known threshold values for
crack propagation under cyclic loading. Table 1 shows the
values of stress intensity factor calculated using LEFM for a
small subsurface crack subjected to surface traction as shown
in Fig. 1. The maximum pressure p, was assumed to be 980
MPa; and a half of the crack length a'to be 10 um. The
computed stress intensity factor is of the order of the known
threshold stress intensity factor for steel.

In short, not only is the stress intensity factor too small to
enable any crack propagation, but also the plastic zone size is
too large, being comparable with or larger than the distance

y
!
l 20 I
N iy
m p° l - X
¥
L R
XzJ 2c !
o
Xy

Fig. 1 Geometry of the subsurface crack

from crack tip to surface, for LEFM to be valid. Therefore, it
is necessary to analyze the full elastoplastic deformation of
the crack tip.

2.2 On the Friction Boundary Condition Between Crack
Surfaces. The friction force between crack surfaces plays an
important role when the crack is under compressive loading.
This friction force complicates the analysis since the shear and
normal stresses at the contacting crack surfaces are not
known. Therefore, the problem has to be solved using an
assumed friction coefficient, i.e., the ratio of these unknown
stresses.

There are several papers that treat this friction problem [4,
5, 10]. However, none of them apply correct boundary
conditions. In those treatments the normal and shear stresses
at the crack surfaces due to the applied load were assumed to
be known and the net shear stress was obtained as 7,, =
Tapplicd — B Onormar |- HOWever, this is a rough approximation
of the real situation. These stresses are generally unknown
and, therefore, cannot be used in an explicit formulation.

In this study only the limiting case of zero friction coef-
ficient was solved using the finite element method. When the
friction coefficient between crack surfaces is finite, the strain
and the stress concentration at the crack tip is expected to be -
smaller than when there is no friction, The role of friction
between closed surfaces is very-complicated, because the
actual frictional force distribution along the crack surface
under the moving load and the effect of the roughness of
crack surfaces on stress concentration cannot be modeled with
any degree of certainty. These are two of the many difficult
issues that have to be investigated further.

2.3 On Crack Trajectory. In sliding wear there are two
experimental aspects of crack propagation that need to be
understood. Experiments show that many cracks propagate
parallel to the surface and ultimately the cracks change the
direction toward the surface, terminating the growth. In

Nomenclature
a = Half length of asperity contact
¢ = Half crack length
d = Depth of crack location
k = Shear yield stress .
Po = Maximum normal stress at the center of
asperity contact
r = Radial coordinate from a crack tip
E = Modulus of elasticity )
E; = Tangential modulus -
K; = Mode Istress intensity factor
K;; = Mode ITstress intensity factor-

AK,;; = Mode II stress intensity factor range
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AC = Crack growth length
AS = Crack-tip sliding displacement
AC, = Length of rewelding
u = Friction coefficient
v = Poisson’sratio
§ = Angular coordinate from the crack plane
Tmax = Maximum shear stress
Tapplics = ADplied shear stress
Thee = Netshear stress
Opormal = A_pplied normal stress
g, = Yield stress

Y

Transactions of the ASME

Downloaded 02 May 2010 to 171.66.16.25. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



delamination wear only the crack tip at the trailing side
reaches the surface [13].

Notwithstanding the importance of the subject matter, no
acceptable criterion for crack propagation exists for fracture
involving combined compressive and shear loading. In the
past only the propagation of a crack under simple loading
conditions has been studied. There are two criteria that are
commonly used in predicting the crack propagation direction:
the maximum hoop stress criterion [11] and the minimum
strain energy density criterion {12]. :

When the maximum principal stress criterion is applied to
the subsurface cracks using the stress intensity factors
calculated [9] it predicts the crack extension direction to be
about 110 deg at the left (trailing) tip and about 70 deg at the
right (leading) tip from the positive x-axis direction which is
parallel to the surface (see Fig. 1), implying that the crack
extends toward the surface at both tips. Similar results are
obtained using the energy criterion. This might explain why
the subsurface crack at the trailing tip extends to the surface
when the crack is in the tensile zone. However, the argument
is based on the elastic solution and, therefore, may be
irrelevant unless the actual plastic stress components are
proportional to the corresponding elastic stress components
used for the prediction. At any rate, these criteria cannot be
used to explain crack propagation when cracks are under
compressive and shear loading.

Experimental results of Jahanmir et al. [13] show that the
subsurface cracks propagate parallel to the surface con-
siderable distances before they become loose. In sliding wear,
since the slip planes are shown to line up paraliel to the
surface, the maximum shear stress direction of these planes is
likely to be the crack propagation direction. The result of the
elastoplastic finite element study in the next section seems to
support this. However, it cannot be ascertained since the
entire region of interest is in plastic condition and con-
sequently, the maximum shear stresses everywhere in the
region reach the shear yield stress. Therefore, we may have to
examine the stress history to determine where yielding first
occurs.

Generally, yielding starts from where the maximum shear
stress reaches the shear yield stress first. Elastic solutions,
normally being functions of Mode I and Mode /7 stress in-
tensity factors in this case, can be used to determine the yield
conditions. If the maximum shear stress distribution is known
as a function of direction, the direction in which the
maximum shear stress possesses the highest value can be
determined as being the direction of crack propagation.

The foregoing discussion allows us to use the elastic
solution to determine the direction of subsurface crack
propagation since we only have to find the direction where
yielding first occurs. In plane strain the maximum shear stress
Tmax 15 €asily obtained using the crack-tip stress components as
[11]
Tmax = m[l(% Sin20+2K]K” sin 20

+ K% (4 —3sin?6)] /2 n

When the Mode I and Mode II stress intensity factors
calculated by the finite element method are used for the angle
of the maximum of 7,,,, the equation predicts the angles of
between — 5 and 5 deg for most cases of interest. These values
are very small, implying that cracks propagate parallel to the
surface.

Crack growth in the shear direction has also been observed
and suggested by others. McClintock [10], while investigating
the crack behavior in the rail under rolling conditions, has
suggested that cracks in a compressive field are most likely to
grow in shear. In fact, Forsyth [14] has observed that fatigue
cracks have two growth regimes. In Stage I, cracks formed on

Journal of Applied Mechanics

Crack ¢

Fig.2 Finite element mesh around a crack tip

the slip planes of the persistent slip bands grow when they are
most closely aligned with the maximum shear stress direction.
Furthermore, Besuner [15] has suggested that if the cyclic
principal stresses are primarily compressive, then there is no
reason for a crack to align itself at right angles to a com-
pressive maximum principal stress.

In summary, it is found that the direction of crack
propagation is coincident with the direction of maximum
shear stress at the crack tip. This is consistent with the ex-
perimental observations.

3 The Crack Propagation Mechanism in Elastoplastic
Solids

The allowable plastic size consideration and the small
values of the stress intensity factor at the crack tip suggest that
elastoplastic fracture mechanics approach is required in
studying the subsurface crack propagation. In this section the
problem is investigated using the elastoplastic finite element
analysis.

3.1 FEM Analysis and Results. The same model was
used as in the case of elastic analysis (see Fig. 1) to calculate
the elastoplastic response under the moving load. No dynamic
effect was considered in the analysis. The material was
assumed to be isotropic and slightly work-hardening (£ =
10~*E). Other properties used were as follows: £ = 1.96 X
10° MPa (2 x 10* kg/mm?), » = 0.28, 0, = V3k = 424 MPa
(43.3 kg/mm?),

For the investigation of crack propagation only a short
crack (¢ = 1/4 a) was used. Due to the prohibitively expensive
computer cost a limited parameter study was conducted for
the case of @ = 10 um, py = 4k, and p = 0.25,

Throughout the study the ADINA finite element program
developed by Bathe [16] was used. The solution techniques
regarding the choice of load increment per step and iteration -
procedures are described in detail in reference [17], par-
ticularly for the present study in reference [9], and will not be
repeated here.

Proper crack-tip modeling is quite important in simulating
crack tip deformation and propagation. As shown by
deLorenzi and Shih [18] an eight-noded triangular element
with the side nodes at the midpoints can have a 1/r singularity
when three nodes at a crack tip are allowed to separate during
deformation. This type of singularity representation is
suitable for the HRR field [19-21] when the material model is
elastic-perfectly plastic.

When the elements of the type mentioned in the foregoing
are used in the case of tensile loading, they allow the modeling
of crack tip blunting as the nodal points separate during
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Fig. 3 Plastically deformed zone around a crack under a moving
asperity load: a = 10 ym, ¢ = 2.5 ym,d = 5 um, » = 0.25, and po = 980
MPa (= 4k). Dots indicate the integration points (3 x 3 integration order

in this case) that were plastically deformed in each finite element.

deformation. However, when a crack tip is in the combined
compression and shear loading, all nodes at the tip must be

constrained properly. Without any constraint too many crack

tip nodes may overlap, resulting in geometrical in-
compatibility. Preliminary analyses of different crack tip

320/ Vol. 51, JUNE 1984

modeling have suggested that the use of only one element with
1/r singularity in the direction of propagation and several
singular elements of other type around the element is a
reasonably good mesh design for the representation of crack-
tip deformation in this case. This is shown in Fig, 2.
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Table 2 Relative crack-tip sliding displacement (um)

(a) For a crack at the depth of 5 um

a b c d
Righttip  0.0009 0.0023 0.0033 0.0027
Left tip 0.0013 0.0030 0.0035 0.0028
(b) For acrack at the depth of 2.5 um

a b c d
Righttip  0.0003 0.0012 0.0077 0.0093
Left tip 0.0002 0.0031 0.0141 0.0138

e ¥ g h*
0.0015 ~0.0009 -—0.0008 —0.0001
0.0004 -0.0012 -0.0005 —0.0003

*Each step corresponds to the relative position of moving asperity contact to a crack

shown in Fig. 3.

Figure 3 shows the development of plastic zone at each step
of the moving load when the mesh discussed in the foregoing
is used. When the load is applied at the distance from the
crack, the overall shape of the zone plastically deformed is not
affected much by the presence of the crack. When the load
moves over the crack, however, the stress field changes
significantly due to the crack. It should be noticed that there
are some spots inside the plastic region where unloading has
taken place. It is expected that the overall plastic zone should
become smaller with the repeated loading and unloading.

According to the numerical results, the nodal points on the
crack surfaces are displaced so that the upper surface initially
slides forward and then it slides backward as the load moves
over the surface above the crack. This is consistent with the
result obtained by McClintock [10] for subsurface cracks in a
solid rolling contact. Table 2 lists the relative sliding
displacements of crack-tip nodal points for two different
depths of crack location. It shows that the relative
displacement increases as the contact load moves over the
crack, then decreases, and finally changes the sign. The
following can also be observed from the table: (1) the crack
closer to the surface has larger displacements and (2) the left
tip usually undergoes large relative sliding displacements.

In Figs. 4 and 5 the shear strain at the crack tip are plotted
as a function of the distance from the crack tip for different
stages of the loading position as the asperity contact moves
from left to right. The distribution of shear strain increases
until it reaches a maximum value and then decreases. After it
attains a minimun, it increases again. At very near the tip the
shear strain changes from positive to negative, and then to
positive again. When the state of stress is complex, the
equivalent strain is the relevant plasticity parameter rather
than any one strain component. However, it is rather difficult
to obtain the distribution of equivalent strain along the
distance from the tip. Nevertheless, in this case the use of this
shear strain component is quite acceptable since the other
components of strains do not change much.

3.2 The Mechanism of Crack Propagation. The J in-
tegral and the crack-opening displacement are the most
frequently used parameters in characterizing plastic fracture
mechanics. However, some difficulties are associated with
both. First, the path independence of J integral, which is
derived using deformation theory of plasticity, has not been
proven for incremental plasticity. Elastoplastic finite element
calculations have shown that J is strongly path-dependent for
contours very close to the crack tip, which is the region where
heavy plastic deformation takes place [22, 23]. Second,
McClintock [24] has shown that the different degrees of
constraint associated with various in-plane configurations
would prevent the satisfactory development of a one-
parameter theory of fracture mechanics for full plasticity.
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Fig. 4 Shear strain versus distance from the left crack tip. Each step
from (a) to (h) corresponds to the relative position of moving asperity
contact to a crack shown in Fig. 3.

On the other hand, the crack-opening displacement is
conceptually simple and straightforward regardless of its
appropriateness for a one-parameter characterization of
crack-tip fields. The analytical treatment, however, is very
difficult because of the complexity for elastoplastic materials
and therefore, finite element analyses have been used ex-
tensively for the study of crack tip profiles. In finite element
analysis it is essential to use sophisticated crack-tip elements
to obtain satisfactory modeling of the deformation. In ad-
dition to the computational difficulty, the relation between
crack-opening displacement and crack propagation is not yet
fully understood.

Almost all the discussions regarding the crack propagation
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Fig.5 Shear strain versus distance from the right crack tip. Each step
from (a) to (h) corresponds to the relative position of moving asperity
contact to a crack shown in Fig. 3.

in the literature are limited to Mode I and Mode /I1. In sliding
wear the subsurface cracks are subjected to Mode I7 or
combined Mode I and Mode I loading. As shown previously
the subsurface cracks in sliding wear are likely to grow in the
direction parallel to the surface. Since experimental results
show that the surface texture developed due to sliding is that
of slip planes [25, 26] the cracks propagate along a direction
nearly parallel to the slip planes.

The crack-opening displacement concept is applied here to
determine the growth rate of a crack subjected to combined
compressive and shear loads. In this mode the relative sliding
displacement at the crack tip occurs by means of slip due to
crack tip deformation. If the maximum relative displacement
is employed as a crack-tip sliding displacement (CTSD), AS,

" then the crack growth length AC may be expressed as

AC=AS—AC, 2

where AC,, is the length of rewelding. According to equation
(2), the crack growth in Mode IT is always equal to CTSD if
rewelding does not occur.

As can be seen from Table 2, the relative sliding
displacement at crack tips varies with the magnitude of the
moving asperity load and is a function of the geometric
location of cracks. To determine the crack growth from the
crack-tip sliding displacement, an appropriate fracture
criterion must be used. A commonly used fracture criterion is
the strain at fracture. When a crack is loaded, the crack will
grow up to the point where the strain exceeds the fracture
strain. If a material has a high fracture strain, the crack
growth will be smaller than when the same material has a
lower fracture strain. However, little information is available
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on fracture strain for these complex loading situations and
hence it is impossible to determine the exact relation between
crack-tip sliding displacement and crack growth at the present
time. Nevertheless, when the maximum relative sliding
displacement in Table 2 for cracks at various depth are
assumed to be the crack growth rates, the predicted wear rates

" compare favorably with the experimentally determined wear

rates [27].

The numerical results indicate that the extent of crack
growth AC increases with decreasing depth of crack d for a
given friction coefficient. Therefore, cracks near the surface
should propagate faster than those away from the surface.
However, experimentally cracks are only observed at a finite
distance below the surface. This is because they cannot
nucleate very near the surface due to the high triaxial state of
compressive stress [2]. The location of the cracks is deter-
mined not only by the state of stress but also by the
metallurgical factors. For example, in two-phase metals in
which cracks preferentially nucleate at the hard par-
ticle/matrix interface, the actual location of the crack will be
determined by the location of the particles.

As pointed out earlier it is quite important to use specially
designed crack tip elements for accurate numerical
simulation. The isoparametric triangular element with 1/r
singularity seems to be well suited to the requirements. Un-
fortunately, this element is good only for the elastic-perfectly
plastic material.

4 Conclusions

(1) The propagation of subsurface cracks in elastoplastic
solids can be characterized by the crack-tip sliding
displacement.

(2) The maximum shear stress criterion for the direction of
shear crack growth predicts the experimentally observed crack
propagation direction under combined compressive and shear
loading which is parallel to the sliding direction.

(3) The linear elastic fracture mechanics approach is
inappropriate for studying the mechanism of subsurface crack
propagation in sliding wear.
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contact. In the case of a square plate, an appropriately chosen finite integral
transform converts the dual series equations that result from the Levy-Nadai ap-
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Introduction

The bending of plates that are partially constrained along
all edges, without anchoring the corners, is examined here.
Unilateral supports, or supports capable of exerting forces in
one direction only, allow the plate to seek its natural contact.
Since parts of the plate near the corners will bend away from
the supports upon loading, it is clear that the problem is one
of receding contact [I]. It therefore follows that the extent of
contact between the plate and the supports is independent of
the level of loading and that the support reactions are
proportional to the load.

To solve this unconstrained plate problem, an assumption
has to be made concerning the nature of the singularity at the
points where the simple supports change to a free edge. Keer
and Mak [2] solved for the extent of contact between a
laterally loaded quarter infinite plate that is not anchored at
the corner by allowing no singularity in the moments, and the
same assumption is made here. While a singular distribution
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of support reactions is still found, it is integrable and the
resultant is equal to the total applied load. )

Rectangular plates that are partially supported have been
considered by Kiattikomol, et al. [3], and rectangular plates
that involve considerations of advancing contact have been
considered by Dundurs, et al. [4]. The corners of the plates
studied in [3, 4] are anchored.

Formulation

To simplify the analysis, a square plate is considered in this
paper, and as shown in Fig. 1, the lengths involved are scaled.
The actual dimension of the square plate is a, and the actual
(barred) coordinates are, for instance, ¥ = ax/7 and y =
ay/w. The plate is partially simply supported on each edge. A
constant load g is supplied in the z direction, with the
corresponding displacement given by w(x,y). The differential
equation satisfied by w is

*w . *w + *w
ax* ax2ay? ay*
where D = Eh3/12(1-1%) is the bending stiffness, E is
Young’s modulus, » is Poisson’s ratio, and # is the plate

thickness.
The stress couples and resultants are

T2 *w aw ’
M=—(7) p(Gr vgr ) @

=qa*/D7?, m
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Fig.1 Square plate with unilateral supports
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T \2 Fw
Mxy=—Myx=(7> D(l—v)a—xa;, Qo)

w\3 a8 ?w P’w
(1) 02 e 22
* a Dax ax? +@2=) ay? (3a)

3 F:] 92 32
V== (Z) D[22 oo L0

3
a dy L ay? ox? I’ (30)

and the corner force R, at x=0, y=0, is given by
R=2M, |, 0 =0 )

Because of the symmetry of the deflection function that will
be used, boundary conditions need only be written on y=0,
0<x=<7/2; x=7/2, 0sy=u/2; and x=y, Osy=<n/2 (Fig.
1):

w=W, : y=0,x=0, (5)
d
—:=0,w=0 : y=0,e<x<u/2, (6a,b)
V,=0 1 y=0,0=<x<e, (6¢c)
M,=0 1 ¥y=0,0=sx<7/2, (6d)
V,=0 cx=n/2,0<y=<u/2, (7Ta)
d
LA : x=1/2,0<y=m/2, (7b)
ax
ow w
———=0: x=y,0=<y=< . 8
P 3 xX=y y=u/2 8)
Furthermore
M, =0: x=0,y=0. ®

Utilizing the Levy-Nadai approach [5], the lateral
deflection satisfying equations (1), (5), and (8) is

4 oo
w(xy) = % Y W) + W, 001+ W, (10)
m=1,3...
where
4
Wi (69) = [ s+ Y () sim (), an

and

Journal of Applied Mechanics

Y,, (u) =A,,cosh(mu) + B,,mu sinh(mu)
+ C,,sinh(mu) + D,,mu cosh(mu). (12)

In (10), W, is the deflection of the corner, it is left undefined
at present. Boundary conditions (6d), (7a,b) lead to the
relations

A, = [4v/75m’ +2c0th(8) D, 1/(1 - »), 3)
B, = —coth(®)D,, (14)
C,, = — W4/ 75 m®)tanh () + 2D,
+(1 = ») B(tanh(8) — coth(8)D,,1/(1 - »), @15)
in which
B=mm/2. (16)

The problem is therefore reduced to the determination of the
constant D,,. The boundary conditions (6a,c) are mixed with
respect to the slope and the shear, and they are written as the
dual series equations

0

Y, mP,cos(mx) =0, e<x=u/2, amn
m=1,3,...
mfl\:s m’P,, [(1 +Fy)sin(mx) +m~" = (x)]
= dH,,
= mg; — (%), 0sx<e, (18)
where
P, =Q2/%*m’)+coth(8)D;,, (19)
1 +F,, =tanh(8) —nfsech®(8), 7= 1= (20a,b)
3+»
G,, (x) =nsech(B)[sinh(B — mx) — mxcosh(B — mx)
+ Bsech(B)cosh(mx)], 21
wm*H, (x)= 4mx/(3+v)—-2[(3 - v)tanh(B)/(3 +»)
— nBsech?(B)]cos(mx) + 2sech(B)
[(1 + »)sinh(B—mx) /(3 + »)
— ymx cosh(B —mx)
+ 78 sech(3) cosh(mx)]. (22)

As m— oo, the weight function F,, approaches zero as e~ """,
The constant 1 in (18) serves to isolate the singularity
associated with the quarter-infinite plate [2]. This can be seen
more readily by formulating the rectangular plate problem, in
which case 3 = mb, and noting that F,, — 0 as b — o, The
remainder boundary condition (60) is satisfied at a later stage.

The dual series equations (17) and (18), may be reduced to a
single integral equation by representing the unknown coef-
ficients P, by a finite Fourier transform

e
P,= —175 o (t)sin(mt) dt, 23

m?Jo
in which the auxiliary function, ¢(?), remains to be deter-
mined. Note that ¢(¢) is related to the second derivatives of w
with respect to x and y and thus has the same singularity at the
transition point from simple support to no contact as do the
moments there.

By substituting P,, into the first of the dual series

equations, interchanging the order of summation and in-

tegration, and using the identity

o
E m ~!sin(mt) cos(mx)
m=13,...
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1(° si
_ _g sin(fu) cos(xu) du=0, 24)
2Jo u

for x>t>0,(x+1) <,

it is seen that (17) is automatically satisfied (see [6]:858.701).
The identity in (24) can be derived by considering the contour
integration of

enrz/l
——— sin(zg¢) cos (zx)dz
SI‘ z cos(nz/2) (zt) cos (zx)
taken around the first quadrant.
Integrating (18) once with respect to x, substituting (23),
and interchanging the order of summation and integration,
yields

[ o0 X 1a+Fcosom)

m=13,...

-G, (x)1sin(mt) dt= — E H, (x) +C, 25)

m=1,3,...
O=x<e,

in which C is a constant of integration. If we examine the
preceding equation for x=0 and enforce the condition that
the corner force (4) be zero, it is apparent that C must be zero.
Noting the identity

oo

E sin(mz) =

m=1,3,...

, z#0,7/2,7,3%x/2,..., (26)

2sing
equation (25) becomes, for0=x<e,

Seqb(t){ 1/4 + 1/4
0 sin(f+x)  sin(t—x)

=

+ E [F,,cos(mx)

m=13,...

-G, (x)]sin(mt)} dt=— Y, H,(x). @27

m=13,...

The foregoing integral equation can be expressed as a
Cauchy-type singular integral equation of the first kind upon
noting that ([6] :415.06)

1 1 X 7T
—— = X3
sinx X 6

Finally, equation (27) can be expressed as

<. (28)

{02 [ ksne =10, 0<x<e, @9)
T 40 [—
where
1 1
Tk = s T T s
+4 E [FmCOS(mX) _Gm (x)]Sin(mt)’ (30)
m=1,3,...
4 @
r==(7) ¥ Huo. (31)

m=13,...

Preliminary to discussing the solution of (29) for ¢(¢), it is
appropriate here to write down quantities, which will be
evaluated numerically, which are of importance physically.

These include the deflected shape of the plate and the support

reactions.
An important physical quantity is the displacement the
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plate undergoes near the corner of the plate as it lifts off the
support. Using equation (10), together with (13)-(15), and
(19), one obtains for the edge displacement

qa* S .
_ P, sin(mx) + W,
D(l — V) ,":12,3,,“ m ( ) ¢

O<x<n/2..

The finite integral P,, is given in (23). After interchanging the
order of integration and summation, equation (32) becomes

w(x,0) = (32)

o0

qa4 e
W(x,0)= ;o0
D(l —V) 0 m=IE,3,...
m~Isin(mt)sin(mx)dt+ W., 0<x<w/2. (33)
By considering the contour integration of
emz/Z
———sin(g?)si d.
Sr z%cos(wz/2) sin(f) sin(zx) dz
taken around the first quadrant, the identity
E m ~2sin{mt) sin(mx)
m=13,...
1 ¢ sin(fu)sin(x
- _S sinru) sin(xu) ”)Szm( “ du, (c+1) <m (34)
240 u

can be derived; this relation can immediately be expressed in
the form (see [6]:858.711):

- t
E m‘zsin(mt)sin(mx)=l;—, x=t>0 (35)

m=173,...

X
=7 t=x>0 (36)

Equations (35) and (36) can be used in (33) to give, finally

w0 = 2% _'I_T)U: S (1) dt

D 41

+Seq5(t)xdt}+Wc, O<x<e (37)

_qat w
" D 4(1-v)
Observe from (38) and the boundary condition (6b) that

__9a T ¢
== 5 &i- )S o(1)t dt.

Finally, the edge displacement on that part of the plate that
loses contact is given by (37) and (39) to be

SO¢>(t)tdt+Wc, esx=t/2. (38)

4

(39

w(x,0)= (40)

T e
D a0 )SX () (x—1)dt, O<x<e.

The supplemented, or Kirchhoff, shearing force at the
contact with the support at y=0, e<x=<w/2 is

0

V,=-mqaB+») Y,

m=13,...

{m*P,[(1+F,,)sin(mx) +1E,, (x)]1-2E, (x) }, 41
where
E,, (x) =sech(pB)[Bsech(B)sinh(rmx)
+ mxsinh(B8—mx) — 2cosh(B—mx)], (42)

and
@B+ a*m*E, (x) = [(3 - »tanh(B)
— (1 — v)Bsech?(B)]sin(mx)
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+2 —2wsech(B) cosh(B— mx)

+(I-v)E, (x). (43)

Only the term involving the constant 1 in (41) contributes to
the singularity in the shearing force; using (26), equation (41)
can be expressed in the form

d (¢ cos(x) sin(¢) :
= 3 P
V,(e<x=w/2,0)== qa(3+y){dxgo 2[sin2(t)—sin2(x)]¢(t)dt
: 0.2

*S;¢(1) E mlF,,sin(mx)

m=1,3,...
+nE,, (x)]sin(mt) dt 0.1
+2 ) Em(x)}. (44)

m=1,3,...

The moments are assumed to be bounded at the transition
point from simple support to no contact. Therefore, ¢(z) ~
(e—H'%, and V,(x,0) ~ (x—e) "2 as x — e*; the latter
behavior can be determined by examining the first integral in
(44). Although the supplemented shearing force is singular at
the ends of the contact interval, it is integrable because the
singularities are of the inverse square-root type. Integration of
all the support reactions reveals that the total load is
balanced. Thus, in this case, global equilibrium is obtained
within the classical thin plate theory, and it is not necessary to
resort to a higher order plate theory.

Numerical Analysis

The many infinite series in (30), (31), and (44) were summed
to the highest accuracy attainable using double precision on
an IBM 4341. Often, crude summation had to be used, as in
the case of the following very slowly convergent series:

1
cos::?z) =5 [Ch@) - Chz+m),

(45)

m=1,3,...

where Cly(z) is the generalized Clausen function of third
order (see Lewin [8] for a discussion of these functions); the
foregoing equation can be found in Hansen [9] (17.4.11). For
z = w/3 and z=0 the sum in (45) is known to be (7/18){(3) =
0.46746 65734 50953 and N3) = 1.0519 97902 64644,
respectively (see [8], p. 146 and [10] 23.2.18, 23.2.20, and
Table 23.3). Since this series proved the most difficult, and
thereby set the limit to the accuracy attainable, it was in-
valuable to have the preceding check cases. A further example
typical of several of the series that occurred is

o

sinh(my)

i —_— oy /2. 46
ngw_ sin(mz) cosh(mn/2) YT (46)
This series can be rewritten in the form
2 sinh(miy|) e }
sen®y) m}% sin(mz ){ cosh(mn/2) e
+sgn(y) Y, e m2-Wgin(mz), “7)

m=13,...
The first series of (47) converges rapidly, since
sinh(m |y 1)/cosh(ma/2) rapidly approaches e”'?! 7e"™2 as m
increases. The second series can be summed in closed form by
noting that for ¢ >0

oo

E e ™Msin(mz) =Im

m=1,3,...

Y emy=—t+iz, (484)

m=13,...

=Imlev/(1 —e)], (48D)
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Fig.3 Displacement of free edge for square plate
= cosh(#)sin(z)/2[sinh2(¢) +sin%(z)]. (48¢)

Equation (29) is prepared for numerical analysis by in-
troducing the following changes of variable

t=(1+we/2, x=(1+9)e/2, (49a)
(1) =0"(u), k{xt)=Q2/e) K(s,u), f(x)=F(s). (49b)
The question at this point is the appropriate weighting func-
tion in 6*(u) = 6(u) (1+u)*(1 —u)'"2, where 6(u) is regular
at + 1. The square-root singular behavior at ¥ =1 is consistent

with the moments being bounded at x=e. To derive the
behavior at u = — 1, note from (40) that

?w qa’
B—JCZ(X’O)_ - D 1-») $(x). (50)
Since by (6d)
M, (x,0)=0, O=sx=u/2, (620

it also seems obvious that 3*w(x,0)/8x? and 8%w(x,0)/9y?
must both be zero, giving ¢(0) = 0. However, it is found that

P’w 32

- (0=~ v (%0, 52)

which suggests that ¢(0) is not necessarily zero. In an earlier
attempt on this problem, it was assumed that ¢(f) was an-

JUNE 1984, Vol. 511327

Downloaded 02 May 2010 to 171.66.16.25. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



Table 1 The noncontact length e for different values of
Poisson’s ratio

v e
0.1 0307«
0.3  0.268w
0.5 0.224n

tisymmetric so as to have integration over —e <f<e and thus
use ¢(£) = 6(u)(1 ~u?)'2, where t = eu. This procedure led
to slow solution convergence and localized behavior in §(u)
near 1 = 0 that was reminiscent of ‘‘Gibbs phenomenon.”’

The reason for this unwanted behavior is that #(0) # 0,
although very small. The appropriate weight function is (1 —
1)'/? but to make use of the schemes in [7] ¢ () was expressed
in the form

() =0(u)(1 — )2 =[0(u)(1 + 1) =12} —u?)"2,

(53)

Equation (29) can thus be written in the following form,
noting (49a,b)

1 S‘ 0(u)V1 —u?
_ — du
T -1 U—-—s
1
+S_1 K(s,1) 6(u)NT = uldu=F(s), (54)

in which — 1 <s<1 and 8(u) = ¢(u)( +u) V2. The Gauss-
Chebyshev integration formula [7] yields:

- (1-uj) 0(u;) ~
; il [u, s 7 K(Sn“ﬂ@(uf)]—F(sf), (55)
where

u;=cosljr/(n+1)], j=1,...,n, (56a)
Si=COS[(2i_1)7r/2(n+l)]s I=l’ . ’n+1_ (56b)

There are (n+ 1) equations in (55) involving the n unknowns
6(u;) and the unknown length e. During the process of
solution, a value of e is assumed and the i=n+ 1 equation is
not used. Equation (29) with x=0 simplifies greatly and is
actually the corner force condition, which is stated by
equations (4) and (9); this equation is used as the checking
equation after each solution of the » equations in (55). The
correct value of e is found by iteration. The parameter n is

328/Vol. 51, JUNE 1984

increased, and the process repeated, until sufficient accuracy
in e is obtained.

The solution obtained for the noncontact length e varies
with Poisson’s ratio; the values of e for » = 0.1, 0.3, and 0.5
are shown in Table 1; the solution obtained for the auxiliary
function in (23) is shown in Fig. 2 and the displacement of the
edge near the corner is shown in Fig. 3.

Conclusions

A solution has been obtained for the extent of contact
between a laterally loaded, unilaterally constrained, square
plate and its supports. The crucial step is the identification of
the correct behavior the moments and shears have at the
points of transition from support to no contact. Then, by
judicious choice of a finite integral transform the unwieldy
dual series equations are converted to an integral equation of
standard form,

As shown by the values of e in Table 1 a significant portion
of the plate is unsupported when allowed to seek its natural
contact. These values for e at first seem too large, but it must
be remembered that in the classical solution of the bilaterally
constrained square plate, the concentrated forces anchoring
the corners add to more than one-quarter of the total lateral
load ([51, Fig. 63, p. 119).
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The Permanent Deformation of a
Cracked Cantilever Struck
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Transversely at Its Tip

The presence of even a stable crack in a ductile cantilever can have a dramatic effect
on the structural response of the beam. Not only can the magnitude of the per-

manent plastic deformation be significantly increased but also the final shape of the
damaged beam can be dramatically affected by the size and location of the crack.
Such effects are quantified by analyzing a simple model of the cracked beam with

an attached tip mass.

Introduction

Cracks are introduced and grow in structural members as a
result of various mechanisms, many of which are still im-
perfectly understood by metallurgists and engineers. Thus
modern design philosophies assume structures to be flawed at
least to the extent that the flaws are below the threshold of
state-of-the-art detection techniques, and designers choose
their materials to be sufficiently tough so that a structure may
tolerate such flaws and still remain serviceable. In some
applications, the consequences of brittle fracture are so grave
that special care must be taken to make structures ex-
ceptionally flaw-tolerant, even under extreme load con-
ditions. This is the case, €.g., in a nuclear power plant, where
a cracked pipe might be subject to severe seismic, water
hammer, or traverse impact loading. Ironically, it is in this
same area of application that very large cracks, which have
reduced the load-carrying cross section of piping by as much
as 75 percent, have occurred, but fracture mechanics analyses
have shown even such large cracks to be stable [1].

Since structures are designed to be so flaw-tolerant, it may
no longer be the stability of a crack but the excessive
deformation that defines the failure of a cracked structure.
Just as the presence of a crack can increase the amplitude of
elastic structural vibrations [2], perhaps beyond tolerable
limits or perhaps to such a level that excessively fast fatigue
crack growth occurs, so the presence of stable cracks in
structural members made of very ductile material can cause
premature yielding under emergency loading conditions and
result in unacceptable permanent damage to the cracked
member or to neighboring structural elements. The presence
of a crack not only may alter the magnitude of the permanent
deformation but also may change the characteristic shape of
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the deformed member by influencing the positions of plastic
hinges and the angles through which they rotate [3].

In this paper we explore the implications of a stable crack
for the permanent deformation of a cantilever beam struck
transversely at its tip by a mass that becomes attached to the
beam and subsequently moves with it. The same problem for
the uncracked beam was studied by Parkes [4], whose ap-
proach enabled him to draw many general conclusions about
the beam’s deformed shape via closed-form solutions to the
equations of motion of the beam modeled as a rigid, perfectly
plastic body. With an eye toward reaching similarly closed-
form solutions for the cracked cantilever, the approach of
Parkes is followed here as closely as practicable.

After reviewing the assumptions and results of Parkes in
the next section, the problem of the cracked cantilever is
formulated. To avoid the complication of crack closure,
which may essentially negate some of the effects of a par-
ticularly tight crack on the plastic deformation of a beam,
only cracks that are opened in tension by the impact loading
are considered here. Since this would be the worst case
behavior for a crack, the results of the analysis are not par-
ticularly restricted in application by the exclusion of crack
closure.

Not surprisingly, we find that the cracked section of the
beam is the weak link in the structural element, and that,
regardless of the axial location of the crack, it yields before
any other section of the beam. Whether or not a second hinge
develops in the beam is dependent on both the size and
location of the crack. Because the general crack induces the
first plastic hinge at neither the tip nor root of the beam, the
modes of plastic deformation of the cracked cantilever are
quite different from those determined by Parkes, and the
final deformed shape of the cracked beam is distinctly dif-
ferent from the ones that Parkes found to be characteristic of
uncracked cantilevers.

The Flawless Cantilever of Parkes [4]

Parkes [4] has considered a uniform cantilever beam of
length / and mass per unit length m whose rigid-plastic
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= curvature
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Fig. 1 (a) Moment-curvature relation, and (b) deformation mode of
uncracked cantilever (after Parkes [4])

material behavior is characterized by the moment-curvature
relationship shown in Fig. 1(@), where M, is the dynamic
plastic moment, assumed as a first approximation to be in-
dependent of strain rate. The free end of the cantilever is
struck transversely by a body of mass M moving with a
velocity v, the mass is assumed to remain in contact with the
cantilever tip after impact, and the cantilever tip and attached
mass are assumed to have the same velocity v at the moment
of impact, which is taken to be time t=0. A plastic hinge is
postulated to begin at the tip of the beam and move toward
the root as shown in Fig. 1(b), where x is the instantaneous
position of the traveling hinge. According to Parkes’s analysis
the portion of the beam between the hinge and the root
remains stationary, and deformation takes place only at the
hinge, thus enabling the unsupported portion of the beam to
the right of the hinge to be treated as a rigid body.

This enables Parkes to derive equations of motion for the
deforming portion of the beam, and the differential equations
may be integrated in closed form to give the displacement
profile of the beam at the instant when the plastic hinge
arrives at the root of the cantilever. The vertical displacement
Y at any distance A from the tip is thus found by Parkes to be
given by

_ M [6(32—2)_ pE  A0-9
T3, L T1es T TesE T Gepp
1+8
+zm{l+6£}] (1)
where ’
mi A :
b= =7 @)
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Fig. 2 Examples of permanent deformation profiles of uncracked
beams (after Parkes [4))

The subsequent motion of the beam is one of rigid-body
rotation about the stationary plastic hinge at the root, and the
total angle @ through which the hinge rotates before
dissipating the kinetic energy in the system is given by
o= M2 B(3+2B)
" 3mM,l (1+8)?
The total final permanent displacement y,, of any point on the
cantilever is then given by
Yp=y+01-§) 4)
For a heavy striking mass, 8 is small compared to unity,
and the permanent deformed shape of the cantilever is found
by Parkes to be given by
2y, M,
Muv?l
which represents a straight line. For a light striking mass 8 is
large compared to unity, and Parkes finds that

&)

=1-£ (B<<D ®)

;in ! (BE>>1)

YpM,m £

T, ©
In B (£=0)

which predicts a continuously curving profile.

These results clearly indicate the extremes of behavior for
cantilevers struck by heavy and light strikers, and they show
further that the deflections depend on the kinetic energy (1/2
Muv?) when a heavy striker is involved and the square of the
momentum (M?v?) when a light striker is involved.
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Fig. 3 Force system transmitted across crack plane in plasticélly
deforming cantilever

Parkes also conducted experiments, which confirmed his
results. Mild steel beams of 0.635-cm (1/4-in.) square
nominal cross section and of various lengths were struck by a
falling heavy weight and by a light bullet fired from a rifle.
Examples of the permanent damage suffered by Parkes’s
specimens are illustrated in Fig. 2, and the cantilevers struck
by the heavy weight are indeed essentially straight as predicted
by equation (5), while those struck by the bullet are
dramatically curved, especially near their tips. Although later
analysis by Ting [S] and others have gone beyond it, the ef-
ficacy of Parkes’s simple model in capturing the
phenomenological behavior of the flawless beam argues well
for its use as a first approximation to the behavior of the
cracked cantilever.

The Cracked Cantilever

The crack is assumed to be located a distance k from the tip
of the beam and to weaken the cracked section to such an
extent that a plastic hinge develops there when the bending
moment reaches a value yM, <M,, where 0<y<l is a
function of the crack size, with the limiting values y=0 and
y=1 corresponding to the degenerate cases of a completely
severed cross section and no crack, respectively. The
nonlinear relationship between v and physical crack size
depends on the cross section of the beam and the assumed
geometry of the crack and may easily be obtained by con-
sidering the statics of a fully yielded uncracked ligament.

If upon impact, a plastic hinge were to develop first at the
tip of the beam, as Parkes [4] argues for the uncracked
cantilever, the rest of the beam, including the crack plane,
would be subject to the bending moment M,,. Since the crack
plane can only support a moment y M, <M, it would yield
immediately, reducing the bending moment in the end portion
of the cantilever beyond the crack, and thus arresting any
hinge that may have initiated there. Thus as a first ap-
proximation, one may assume that upon impact, the
dominant plastic hinge is initiated at the crack plane, while the
unsupported portion of the beam beyond the crack remains
straight and rigid as it rotates about this hinge.

Since the rest of the beam can support a moment
M, >~yM,, the plastic hinge at the crack plane does not
necessarily imply that the shear force vanishes there, and one
must allow for such a transverse force to act. Thus, as shown
in Fig. 3, the root portion of the beam is initially subjected to
a bending moment yM), and a shear force ¥ whose sense will
govern the subsequent behavior of the beam. The initial shear
force is established by writing the equations of rigid-body
dynamics for the rotating end of the beam, assuming the root
portion of the beam is initially stationary. The angular ac-
celeration of the end of the beam is given by

_ _3’YMp
T B+20)kM
where o=km/2M is a measure of the relative mass of the

beam between the crack and the striker, while the shear force
is given by

M

_ 31+ o)yM),

B +2mk ®
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Fig. 4 Relationship between crack location and size necessary for
second plastic hinge to develop

Then the total bending moment in the section of the beam
toward the root at a distance x from the crack is

M=yM,+ Vx ©)]
and this reaches the yield moment M), first at the section given
by

X 3420 1—v u

I~k 31+ ~ 1-g (19)

where p = k// is a measure of the relative position of the crack.
If x>/—k the bending moment will nowhere in the beam
exceed M), and there will be no second hinge developed.
Criteria for whether or not a second hinge will develop can be
derived by setting x=/—k and relating p and v for various
values of a. Following Parkes, who defined impacting strikers
as light when B=ml/2M is very large and as heavy when ( is
very small, the parameter oo=mk/2M may be used to define
relatively light strikers (a—o0) and relatively heavy strikers
(x—0), where the parameter o is a measure of the mass of
only the portion of the beam beyond the crack relative to that
of the striker. The criteria so derived are presented graphically
in Fig. 4, and it is clear that the effect of the striker’s mass is
not a major factor in determining the number of hinges.
Rather, the crack depth and location plays the principal role.
Thus, e.g., a crack corresponding to y=0.5 will only result in
a second hinge if the crack is located less than 50-60 percent
of the distance from the tip of the beam to the root. In
general, for a given size crack (fixed 7), a second hinge is more
likely to be produced the nearer to the free end of the can-
tilever that the crack is located. And for a given crack location
(fixed p), the deeper the crack the less likely is a second hinge
to develop.

Some preliminary experimental results for cracked can-
tilevers have been reported by Petroski and Verma [6]. These
experiments were designed to test the hypothesis that the
location of a stable crack would influence the mode of per-
manent deformation, and they did produce the expected
results, which are in general agreement with the predictions of
Fig. 4, although the assumption of attached tip mass in the
present analysis makes direct comparison inappropriate. A
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Fig. 5 Two possible modes of plastic deformation of a cracked
cantilever beam with heavy tip mass

more controlled series of experiments on beams with attached
tip masses is planned.

If equation (10) predicts x</—k, there will be a second
hinge initiated somewhere between the crack and the root of
the beam, but to characterize the exact behavior of that
portion of the beam requires an analysis similar to Parkes’s,
which is incompatible with the assumptions that were made to
derive (10). However, from Parkes’s results for the uncracked
beam, one can conclude that the second hinge will develop at
the root of the cantilever for heavy impacting masses, and
only light, high-velocity strikers can be expected to induce any
significant departures from piecewise linearity in the
deformed shape. Of course for very shallow cracks (y—1) or
cracks very near the tip of the beam (u—0), the bending
moment will reach the limit moment very near the crack
location, x =0, and Parkes’s analysis of the uncracked beam
will no doubt provide a good approximation to the total
deformation. Therefore the following analysis should be
understood to be most applicable to cracks away from the tip
of the beam and can be expected to predict best the behavior
of cracked cantilevers subjected to impact from relatively
large masses.

The Two-Hinge Model of the Cracked Cantilever

If the hinges at the crack plane and beam root initiate
simultaneously, then the initial condition Z=0 no longer
applies, and after some time ¢ the cantilever will have one of
the two configurations shown in Fig. 5. The differential
equations of motion for this two-degree-of-freedom system
are, with z now representing the (positive downward) trans-
verse displacement of the crack plane and not, as in Parkes’s
work, that of the cantilever tip,

3yM,

31+ )z + B+ 20)klf= — Mk 11)
. . FIAF M,
B+4a+28z+3(1 + kb= MU=k (12)

where the upper signs apply when both segments of the beam

move downward and the lower signs apply when the segments

move in opposite directions.
If w is the velocity of the mass M just before impact, then
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immediately after impact the velocities of the beam segments
are related through the impulse-momentum equations:

. . 3IyM ¢
1 200)k0=3w— £ 13
31+ )z + (G +20)kf=3w i (13)
. , 3 +yM ¢
da+2 1 k@=3w+ —————— 14
B+4a+28)z+3(1 +a) w MA-F) (14)

Thus the initial conditions, at time #=0, for the motion
subsequent to the impact are:

2(0)= —puv/2, z(0)=0 (15)
k() =2+ wv/2, k6(0)=0 (16)
where
v=2(0)+ k§(0) an
is the initial tip velocity and is given by:
6
il (18)

U= 68+ 4af—o?

which is positive (downward), because 0 < u=ca/B=<1. Hence,
z(0), the initial motion of the crack plane, becomes
vanishingly small as the crack location approaches the tip of
the beam.

Integrating the equations of motion (with the lower signs)
twice with respect to time, using the initial conditions given in
the foregoing, it can be determined that the upward motion of
the root section ceases (i.e., Z=0) when

_ BMku(l — Ww
M,(Bp+3y+2au+3ay—ayw

t (19)

Since, by Fig. 4, a second hinge develops only when v > p, this
expression gives a vanishingly small time as the mass of the
striker grows relative to the mass of the beam (i.e., as 8—0).
Hence the displacement of the beam during the phase of
motion depicted in Fig. 5(a) is small for heavy strikers, as is
the energy absorbed by the plastic hinges:

U (20)

= 1“'[;6 (YU~ k)81 — (1 + 7)Zmax]
where z,,,, =2(#,) and 8, =6(¢,) are the beam displacements
when the phase of motion depicted in Fig. 5(a) ceases. This
energy may be expressed as
V= 3 MW (es7,8) @1

where fis a function whose value approaches zero for strikers
considerably more massive than the beam (i.e., f—0 as o—0).
If this is an insignificant part of the input energy 1/2Mw?, the
subsequent motion, characterized in this case by both
segments of the beam moving in the same downward direc-
tion, must absorb the bulk of the energy and thus produce the
bulk of the permanent deformation. Hence for heavy strikers
the motion of the beam may be taken as entirely according to
Fig. 5(b).

The upper signs in equations (11) and (12) apply when both
segments of the beam rotate in the same direction. In this
case,

. (By—3p+3oy—2ap—ayu) M,

(1~ p)(68—a? +4ap) kM @2)
i 3vM, _ 3(1+0) .
b=~ Gr2aicm " G2k ” @3)

and for heavy strikers where a< <1 and < <1, a good
approximation is given by
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. (y—wM,
T (- wkim 49
f=— . (25)

In cases where the first part of the motion consumes such a
small proportion of the energy available for deformation, a
conservative first approximation to the permanent defor-
mation of the cracked beam may be determined by ignoring
any initial upward velocity and displacement and taking the
initial conditions for equations (24) and (25) to be f=z=2=0
and 6=v/k at t =0, then

(1 — wkim
_v_ (y—mMyt @7
k  (1-wkim
and
_ (y=mM,2
T 200 -pwkim - @8
_ 2
__it _ (v I'L)Mpt 29)

Tk 2(1- wkim

The deformation continues until all the energy is absorbed
by the plastic hinges. By (26) and (27) 6 clearly exceeds 2/(/—
k) for small enough times ¢, so that the tip end of the beam
beyond the crack rotates through a greater angle than the
portion of the beam between the crack and the root. The hinge
at the crack does not stop opening before (/—k)¢=2z, which
occurs at

212
= EI..M (30)
ply—wM,

Inserting this in the expressions (28) and (29) gives the
displacements at the time when the crack hinge freezes. These
displacements corresond to an absorbed energy given by

€3]

U= ,M‘;{ [y (/= k) 8+ (1 - )]
If this energy exceeds the input energy, the deformation must
stop before the time given in (30). In that case the energy
expression (31) in conjunction with the displacements (28) and
(29) may be used to determine the time at which the motion
stops. By equating the absorbed energy to the approximate
input energy Mv?/2, a quadratic equation in ¢ will result. If,
on the other hand, all the input energy is not absorbed when
the crack hinge freezes, then the subsequent rotation of the
bent beam about its root will continue until all the input
energy is absorbed. This phase of motion may be ap-
proximated by

. 2601~ wM,

Z o 32)
which may be integrated with appropriate initial conditions
taken from the end of the previous phase of motion.

Example of a Beam With a Heavy Tip Mass and
Cracked at the Midpoint

For the case where u=1/2, the earliest time at which the
crack hinge can freeze is given by (30) to be, for 2y>1,

fe Pmy
~42y- 1M,
and this corresponds to the displacements, from (28) and (29),

(33)

Journal of Applied Mechanics

Pmv?

= 34

= 162y - 1M, 39
3imv?

= 35

o= 8ay- D, @3

i.e., the half of the beam toward the tip rotates through an
angle relative to the root half three times the angle through
which the root half rotates, and the total energy absorbed
through the time when this condition is reached is given by

(31) to be
2151,, (%mvz)

and this is independent of the crack size, although the
deflections given by (34) and (35) are not. Since 8< <1 has
been assumed, the fraction 8/2M, is much smaller than unity
and the motion continues until the balance of the input energy
is absorbed by the root hinge. The motion after the crack
hinge freezes is governed by (32}, which for p=1/2 reduces to

_ BM,
ml?

(36)

z= 37

and the initial conditions corresponding to the time (33) are
the displacement and velocity given by (26) and (34) to be

Pmy? )
T= 2my
16(2y— )M, f= 38
. ? Ty YV 3%
Z= E
Hence
_ —BM,  2Q2y— D+l [22y=1)+ BliPmy? 39)
T 2mi 42y —~1) 3202y~ 1)*M,
and the energy absorbed is
M,
u== (40)

The motion continues until U=Muv?/2. For the case where
2y —1> >, the maximum displacement of the crack section
is approximately

_Pmv? @1
zmax'_ SBMP
which is much larger than (34), the displacement

corresponding to the first (here now neglected) phase of the
deformation. This deflection is also independent of the crack
size because the dominant hinge is at a noncracked section.
Combining (34) and (41) gives the ratio of the maximum crack
plane displacement to that when the crack hinge freezes to be

Zmax _ 2(2')’_ 1)
z B

which shows that, for very heavy strikers (8< <2y—1), the
beam will have a virtually straight shape with the angle
through which the stable crack’s faces rotate negligible
compared to that through which the beam’s root rotates. For
a given impact velocity and a given beam with attached tip
mass, the effect of increasing crack depth (decreasing v) is a
relatively more pronounced ‘‘knee’’ in the beam.

42)

Summary and Conclusions

The presence of a crack in a cantilever beam can
dramatically alter not only the degree but also the nature of
the permanent deformation that the beam will suffer under
impact. For the case of a cantilever beam with an attached
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heavy tip mass, a crack can cause a dominant plastic hinge to
develop away from the root of the beam. For deeper rather
than shallow cracks and for cracks located closer to the
beam’s root than to its tip, the crack plane hinge can be the
only site of plastic deformation.

As with the results of Parkes [4] for the uncracked can-
tilever, when the attached tip mass is light relative to the
beam’s mass, the deformation pattern is more complex.
Finally, whether or not cracks remain stable during the large
plastic deformation of the beam must be a separate con-
sideration. Some of these complicating factors will be con-
sidered elsewhere.
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On Elastodynamic Diffraction of
Waves From a Line-Load by a
A. K. Gautesen Crack

Ames Laboratory' and

Department of Mathematics, For the two-dimensional problem of elastodynamic diffraction of waves by a crack
Iov;;a State University, of finite width, we assume that the solution corresponding to incidence of a plane
mes, lowa 50011 . o . , LY .
wave of either longitudinal or transverse motions under a fixed angle of incidence is
known. We first show how to construct the solution corresponding to an in-plane
line-load (the Green’s function) from this known solution. We then give a simple
relation between the far field scattering paiterns corresponding to a plane wave
incident under any angle and the far field scattering patterns corresponding to the
known solution. This relation is a generalization of the principle of reciprocity.

1 Introduction P(r ,8 )

We consider the steady state, two-dimensional problem of
diffraction of in-plane waves from a traction-free crack in an
elastic solid. The geometry is shown in Fig. 1. We assume that
we know the solution to this problem for incidence of either a
plane longitudinal wave or a plane transverse wave for one
fixed direction of incidence ¢. In reality, an analytic ex-
pression for this solution is not known, but numerical
procedures are available (e.g., see Achenbach, Gautesen, and
McMaken [1]). The main intent of this work is to show how to
construct the Green’s function (diffraction of waves from a
line-load) from this known solution. Once the Green’s func-
tion is known, we then easily construct the solution
corresponding to incidence from any direction x of either a
plane longitudinal or transverse wave. We find that the far
field scattering patterns for this problem are simply related to
the far field scattering patterns for the problem whose
solution is assumed known. For incidence of horizontally
polarized transverse waves, this problem is equivalent to the
problem of diffraction of waves by an acoustically hard strip;
and the results of Gautesen [2] are applicable here.

We bring with a statement of the main results. We then
discuss how the results represent a generalization of the
principle of reciprocity and offer some potential applications.

The results are derived in the next section, and we call the
reader’s attention to the first paragraph where we describe the

physical consequences of some of the intermediate results of f ¢

the derivation.

Fig.1 Geometry and the contour §

lOperated for the U.S. Department of Energy by Iowa State University
under contract No, W-7405-ENG-82. This work was supported by the Officeof ~ Statement of Problem and Results
Basic Energy Sciences. .

Contributed by the Applied Mechanics Division for publication in the Let v be the scattered field associated with the plane in-
JOURNAL OF APPLIED MECHANICS. cident wave,

Discussion on this paper should be addressed to the Editorial Department, X
ASME, United Engineering Center, 345 East 47th Street, New York, N.Y. vit =d* (¢)explik, (x,cosgp+x,sing)] 1.1y
10017, and will be accepted until two months after final publication of the . .
paper itself in the JOURNAL OF APPLIED MECHANICS. Manuscript received by vyhere a = L or T denotes longltUdmal or transverse (ver-
ASME Applied Mechanics Division, May, 1983. tically polarized) motions, respectively. Also,
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d* (¢) = (cos¢, sing) (1.2a)
d7(¢) = (- sing, cos¢) (1.2b)
k;=w/cy, c3=(A+2u)/p (1.2¢)
kr=wl/cr, & =p/p (1.2d)

where w is the circular frequency of the incident wave; ¢, and
¢y are the speeds of longitudinal and transverse waves,
respectively; A\ and u are the Lame parameters; and p is the
density of the elastic medium. Then v satisfies the differential
equations

L;[vl=0, i=1,2 (1.3)
and the boundary conditions
Tyl = — 7y, [v"] = E¥ (¢) explik ,x, cos¢],
i=1,2, IxI<l, x,=0 (1.4)
where
0
Lilvl= — (7;[v]) + pw?v; (1.5)
dx;
_ 3v,» avj
rij[v}=>\(v-v)6,-j+u( o, + ox, ) (1.6)
Ef(¢) = —ipk, [(k* —2)(d* (¢) *p) &y +d5 (&) p;
+df (¢)p,] (1.7a)
p=(cos¢, sing¢) (1.7b)
k=c;/cr (1.7C)

and §; is the Kronecker delta function. In (1.5) and in the
following, we use the convention that when a numerical
subscript is repeated in an expression, it is understood to be
summed from 1 to 2.

The Green’s function g* (x;y) satisfies

Lilg*]= - o,8(x—y), i=1,2 (1.8)
7,;[g%1=0, i=1,2, Ix;I<1, x,=0 1.9)

We show that
g (x;y) =+ (x —y) + v& (x;y) (1.10)

where f* is the free space Green’s function (or equivalently,
the field generated by a line-load) defined by

0? .

Ykpr)—HP(k

3%, 0%, [HY (k) kL]

+k5HP (k7r) 8y

— 4ipkTfF (%)=
(1.11)

and v#* is the corresponding scattered field defined in terms of
v by

16pk rcosd V5 (x;¥) = (cp/c, ) [PE b+ m,¢)] !

[ o sy Wl (s ds (1L12)
Here,
Wi ) = [ik,cosg— = () (1.30)
ay,
Wi (9) = Yoo (1,92) + (= DF 1, (1, = )]
(no summation) (1.13b)
wE(y) =wil () (1.13¢)

1
P§_(6,¢)=V2ip~'E8 () S_l exp[ ~ ikgxcosfly; (x) dx

(no summation)
2¢(x))=v(x;,0")=v(x,07)

(1.14)
(1.15)

336/ Vol. 51, JUNE 1984

We note that ¢ is one-half the crack-opening displacement
and that

2
Py (6,8)= ), PE(6,4), B=L,T (1.16)
j=1

J

" where P, are the far field scattering patterns defined for r

large by

e (/) iV~ Y, (kgr) T Pg(6,0)eed? (0)
B=L,T

We remark that relative to the y,-axis, w} and w} correspond
to the symmetric and antisymmetric parts, respectively, of the
scattered field v,. The far field scattering patterns
corresponding to W/, are P# (8,¢), 8 = L, T. The fields w{ are
outgoing, homogeneous solutions of the governing dif-
ferential equations with vanishing tractions on the crack
faces. However, the corresponding crack-opening dis-
placements do not vanish at the crack edges. Thus, their
motions are generated by sources at the crack edges.

When the source y approaches infinity in a fixed direction,
v¥¥ (x;y) is proportional to the scattered field corresponding
to plane wave incidence. If, in addition, the receiver x also
approaches infinity in a fixed direction, then v%%(x;y) is
proportional to the far field scattering pattern. We now give
the results analogous to (1.12) for these limiting cases. Let vfx
denote the scattered field corresponding to incidence of the
plane wave v/ = d® (x) explkg (x,cosx+x,sinx)]. Then

4o (x) = (cu/cp)?secodl(c, /cp)cosx
—(—1Ycos¢lP? (x+ (j—2)7,¢)

XIPr o+l | sans)

(1.17)

expl —ikgs cosxIwi (x| +52,%,) ds (1.18)

Let PQ(O,X), v = L, T be the far field scattering patterns
corresponding to v{x. Then

2coso[(c, /cg)cosx —cosflPE (0,x) = (cg/cq)?
X [(cq/cg)cosx — (— 1Y cosdll(c, /c,)cos¢+ (— 1) cosf]
XPY(0+ (j—D)7,¢) PP (x+ (j—2)m,¢) /PF(Pp+m,¢) (1.19)

Discussion of Results

Equation (1.19) represents a generalization of the principle
of reciprocity. Suppose we have an experiment where we
measure the far field scattering patterns of both P; (6,¢) and
P;(0,¢) for incidence of, say, a plane longitudinal wave
under a fixed direction ¢ = wk/N (k fixed) at the 2N
directions of scattering § = 0, = wi/N, j=0,1, ... ,2N-1.
We can compute PF (6,¢) and P (0,¢) from the relations:

2PF (8;,0) =P, (6,,0) ~ (= 1)'P (On—»$), i=1,2

2P7(6;,6) =P1(8;,¢) + (= 1)'Pr(On_;»9), i=1,2
Then we can use (1.19) to compute the far field scattering
patterns P? (0,x) and P%(6,x) at each of the directions of
scattering 6=46,,i=0, 1,...,2N-1 for incidence in any
direction x = 6;,, / = 0, 1, ...,2N—1, of either a plane
longitudinal wave (83=L) or a plane transverse wave (5= 7).

The standard principle of reciprocity states (in our notation)
that
c2PE(0,x) =c3Py (x+m,0+m), v,B=L,T

When this principle is applied to the aforementioned ex-
periment, where B=L and x=wk/N (k fixed), it only yields
information about Py in the fixed direction of scattering
x(1 +k/N).

Formulas (1.12), (1.18), and (1.19) can be useful for
computing asymptotic expansions. Say, for example, one is
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interested in computing small wave-number expansions for
the crack-opening displacements (COD’s) and far field
scattering patterns (FFSP’s) corresponding to plane wave
incidence. It is easier to first compute the small wave-number
expansions for these quantities corresponding to a plane
longitudinal wave incident at a convenient angle. Formula
(1.19) then readily gives the small wave-number expansions of
FFSP’s corresponding to either a plane longitudinal or
transverse wave incident from any direction. From (1.18) the
COD’s corresponding to either a plane longitudinal or
transverse wave incident from any direction are obtained as a
quadrature involving the already computed COD’s. The smalil
wave-number expansion of this integral is easily obtained.
These results for plane wave incidence can then be used in
(1.12) to obtain small wave-number expansions corresponding
to waves incident from a line-load.

2 Derivation of Results

In this section we derive the results presented in the
preceding section. We begin by converting the boundary value
problem (1.3)-(1.4) for the scattered field v into an integral
equation ((2.3) in the following) for the crack-opening
displacement (COD) \ﬁ defined by (1.15). Likewise, an in-
tegral equation ((2.5) in the following) is obtained for the
COD y* corresponding to the scattered field vé#. Then, a
theorem of Gautesen [3] is used to represent the COD \l/g in
terms of the COD ¢ (see (2.6)). The results could be derived
directly from this representation. However, we have chosen to

proceed by using a result derived in the Appendix ((2.94q)) .

which states that the scattered field v&* satisfies a linear, first-
order partial differential equation. The nonhomogeneous
term of this equation involves only the functions ef§- which are
(to within a multiplicative constant) the mode /(i=1) and
mode II(i=2) stress-intensity factors corresponding to the
left (j =1) and right (j = 2) edges of the crack (see (4.3)). From
the representatlon of the COD \Pg, we find that the stress-
intensity factors e can be expressed in terms of the scattered
field v (see (2. 11) and (2.8)). Then after determining a con-
stant, we find that our results follow directly from the
aforementioned partial differential equation.

We begin by noting that v admits to the integral
representation

v; (x) = (My); (x) 2.1)
where
1
My); (x)= —ZS My (a =5.x2)Y;(s) ds (2.2a)
my (x) =7y[f'] (2.2b)

and y,f (x) and 7; are defined by (1.15), (1.11), and (1.6),
respectively. By application of boundary condition (1.4), we
find that i satisfies the integral equation

K:¥;) (x))=E*(¢)explik,x,cos¢],lx, | <1 (nosummation)

(2.3a)
and the edge condition

Vi(£1)=0 (2.3b)

where
2

d 1
K =25 k-9 veras

2 d2 2
(Vaipk3) - ' l(x)—<l< +2k? 3 ) HP(k;1x1)
d2
— 4k <1+kL —)H{,‘)(kLIxI)
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(ipk}) ' — @ k0= (K +2ki? __) HPk, xl)

2 dz
‘jcz (x R )Hf,”(krlxl)
With v&* (x;y) defined by (1.10), we note that
vek (x;y) = (MY£) (%) Q4

where ¢f is related to v& by (1.15). The integral equation
satisfied by \Lg is

Kb F) (x))=my; (0

(no summation)
(2.5a)
YE(£1y)=0 (2.5b)

Gautesen [3] has shown that the solution to (2.5) is related to
the solution ¥ of (2.3). Details related to a problem similar to
the one considered here can be found in Gautesen [4]. In
particular

4k, cosoPY_; (6,0) Vi (x13y) =F¥ (x13y)
i (XL v (¥) +¥; (—=xDLt v, (—y)  (no summation)

=X,y X 1 <1

2.6)
where
9
L7 =ik cos¢F —
ay,
1
v 0= | Wm0 —s2) ds X

and near the edge x, = (- 1)/, F¥ has the asymptotic behavior
Ff (x13y) ~0([1 = (= 1Y X, *?)

The explicit representation of F¥ is not needed. Upon using
the identity,

myi(x1,%)= —(— 1)k+jmkj (X1,=X3)

we find that v,;, as given by (2.7), is related to v,, as defined
by (2.1) and (2.2), by

=405 () =0, (X1,%,) + (= Do (0, = X5) 2.8
We show in the Appendix that
D\ v (z;y) = — pk, (— 1Y el (y) e} (2) (2.9a)
where
d 3
Di=—+-— 2.9b
= T (2.90)

and e (y) represents the amplitude of v$* (x;y) near the edge
X,(— 1Y, which can be determined from

(1 — k= )]V2gK (x15¥) ~ (= 1)U Dek (y)[k, (1 — (= 1Y x))]2
(no summation) (2.10)

Since, near the edge x, = (—1), ¥; has the asymptotic

behavior
¥i (xy) ~ (= 1)V Ddpk cosln(1
— kO] 2af ($)P§_i (@)l (1 (= 1Y x)]'2
(no summation)

where @/ (¢) are unknown constants, it follows from (2.6) and
(2.10) that

el () =al($IL v (y) +al 7 (o)L vy (—Y)
(no summation) 2.11)

We remark that @/ {¢) [4uk, P§_;(¢,p)cosp] ~! are the stress-
intensity factors corresponding to the scattered field v. Upon
substitution from (2.11) and (2.8). we find that (2.9q)
becomes
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Dy v (zy) =c; () (— 1Y wi (y) W} (2) (2.12)
where w{ are defined by (1.13) and
c;(¢) = —pk, ([a} ($))* —[a] (¢)]*}
To determine the constants ¢; (¢), we let
z= — p(cos¢,sing),
and note that in the limit as p — o
pdf (p) v§* ~ 8wk op) ~ " (cr/cy) *expli(kop+ m/H)]vi (¥)
(2.13)
dit (¢)v,(z) ~
— (ko p/2) " expli{kop—T/HP, (¢ + 7,¢) (2.14)

Then taking the scalar product of (2.12) with df, and sub-
stituting from (1.13), (2.13), and (2.14) we find that

ci (@) =—(cr/cy) [BukrcospPF (d+ m,¢)] ™! 2.15)

The results of Section 1 readily follow. With ¢; (¢) defined
by (2.15), v#* defined by (1.12) satisfies (2.12). Homogeneous
solutions to (2.12) which also satisfy (1.3) in the field are not
outgoing at infinity. When for p large,

z= — p(cosx,siny)
pdf (x)v§* ~@wkp) ™" (cr/cg)?expli (kgp + 7/ (¥)
d? (x)v,(z) ~ — (wkpp/2)~ " expli(kgp— T/H)]Ps (x + T,0)

is substituted into the scalar product of (2.12) with d? (x), we
find that

s .
—2cos¢ ( F — ikﬁcosx> v (y)
i

= (03/Co) (e /cp)cosx — (— 1) cosplwi ()
X P (x+ (j—2)m,0)/ P§ (¢ +,0) (2.16)

The solution to (2.16) is given by (1.18). For p large, we find
that substituting

y = p(cosb,sinf)
dY(0) v (y) ~ (mk,p/2) " expli (k,p— 7/4)1PE (6,%)
di (0) v, (y) ~ (wk,p/2)~ " expli(k,o—7/D]P, (0,9)
into the scalar product of (2.16) with @7 (9) yields (1.19).
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APPENDIX"

We offer a brief derivation of (2.9a). A more detailed
derivation can be found in Gautesen [4]. We begin by noting
the identity for any pair (u,v):

v G

: ou; ;
LLul+ —L[vl= — A.1
ax, itul 9x, il ox; “.h
where
ou; dv; du; 0v;
= E]—T[V]U'f' ET[‘]]U—/"‘SU[("Z —2)—8.;:‘ a—x’
311,» ( 31),- aUJ > 1 2 ]
+ + —u uv;
ax; \ dx;  dx; poopEHi

Substitution of u; = g¥(x;y) and v; = gl(x;z) into (A4.1),
subsequent integration of x over space, and utilization of (1.8)
and the Divergence theorem yields

Digf@y)=- | G, ds (A4.2)

where the reciprocity relation gf (z;y) = gl (y;z) has been
used. The contour Sis shown in Fig. 1.

The integral over the faces of the crack vanishes by
boundary conditions (1.9). Thus the contribution from the
integral in (4.2) comes from the small circles centered at the
edges. Near the edge, x = ((— 1)/,0),

g (x;y) ~const +ek; (Y)S7 (8,) (kp.d) " +0(d"™) (4.3)

where (d,0,) are the polar coordinates centered at the edge
shown in Fig. 1 and

wlw (k> — 117 (8,)
=[x* +2m — 5)(x* — 1)sin? 12 0,1cos 2 0,q,,
+ (=11 —(2m = 5)(«* — 1)cos? V20,]sin V20,45 _,,
(no summation)
q, = — (= 1Ycosf,i, +sinf,i,
a4, =(—1Ysinf,i; +cosbyi,

Substitution into (A4.2) from (A4.3) for the integrals about the
edges and from (1.10) for gf yields (2.9a4). Also, equation
(2.10) follows from (A.3), (1.10), and (2.4).
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Introduction

The ultimate object in the tube-tubesheet joining process is
to maximize the tube-to-tubesheet residual contact pressure
after the rolling process has been completed. A method to
evaluate this pressure is an essential element to joint design.
Works by Dudley [1] and Brown [2] help explain the roller-
expanding phenomena in physical terms. Analytical work by
Goodier and Schoessow {3] and a companion experimental
paper by Grimison and Lee [4] are important milestones in the
understanding of the tube expansion process. Goodier and
Schoessow develop graphical results for elastic-plastic loading
and unloading of a joint assuming plane stress, the Von Mises
yield criteria [5], and a room temperature process. The effects
of tube wall thickness and relative magnitudes of tube and
tubesheet yield strengths are qualitatively discussed by
Goodier and Schoessow. Additional experimental works by
Alexander and Ford [6], Beston [7], Culver and Ford [8], and
by Urogami, et al. [9] serve to provide added information on
the subject of tube-to-tubesheet joint contact stresses. Wilson
[10] presents a three-dimensional finite element analysis of the
tube-to-tubesheet joint; his emphasis is on the residual stress
distribution in the roll transition region for a particular
geometry.

The ASME Code [11] addresses joint strength in a tube-
tubesheet connection solely by setting limits on allowable load
permitted on the tube. Certain liberties may be taken on joint
strength based on user performed testing, but essentially the
ASME code limits the tube stress to the code allowable stress
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Analysis of Tube-Tubesheet Joint
Loading Including Thermal

The tube-to-tubesheet rolling process is reexamined using a two-dimensional elastic
plastic analysis. In addition to room temperature rolling, subsequent thermal
cycling of the joint is considered. The development of a computer code based on an
incremental analysis that includes finite deformation effects and the possibility of
reversed yield is presented. Typical simulations are presented that indicate some of
the influences of geometry, materials, and loading on final tube-to-tubesheet

for the tube material. The ASME code does not address the
maximum joint load obtainable, nor does it address the effect
of subsequent temperature cycles on joint strength.

It is the purpose of this paper to establish a special purpose
computer solution to the two-dimensional rolling problem
which includes elastic plastic behavior, large deformations,
and establishes residual contact pressures both immediately
after initial room temperature rolling, and also after a sub-
sequent temperature cycle. The analysis places no restrictions
on yielding of the tube or tubesheet during any phase of the
simulation. Although creep effects under a high temperature
cycle, including a hold time, are not considered herein, the
incremental solution offers no barriers to later inclusion of
creep effects. The motivation for the work is to develop a
modern analysis tool to predict the final tube-tubesheet in-
terface pressure p/, after the rolling process, and predict the
effect of subsequent loadings on p/. The work differs from
previous efforts in the field in that it provides a cost-effective
numerical approach to the two-dimensional tube rolling
problem which includes large deformation effects, tube or
tubesheet yielding during unloading, and changes in contact
pressure during temperature cycles after the initial roll.

Analysis

The roller or hydraulic expansion process is characterized
initially by a tube loading stage. The tube is expanded by
internal pressure until contact with the inside surface of the
tubesheet hole is made; the tube may remain elastic or become
plastic during this loading stage depending on initial radial
clearance between tube and tubesheet hole. Subsequent to
tube-to-tubesheet contact, as the internal pressure con-
tinuously increases, loading of the tubesheet begins.
Tubesheet deformation is initially elastic until the state of
stress in the tubesheet at the hole surface satisfies the yield
criteria. With additional increase in rolling pressure, the
plastic zone in the tubesheet increases until a maximum rolling
pressure is reached. With subsequent decrease of the rolling
pressure, both tube and tubesheet are unloaded, but a residual

JUNE 1984, Vol. 517339
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HS = Layer Thickness ith

Fig. 1

Fig.2 Stress and displacement definitions for a typical element

contact pressure may exist at the interface of the tube and
tubesheet after all of the internal pressure is removed.
Reversed yielding may occur during this unloading in either or
both tube and tubesheet.

If the tube and tubesheet are made of different materials,
any subsequent temperature change of the joint from the
rolling temperature to the unit operating temperature changes
the tube-to-tubesheet contact pressure. The residual contact
pressure after a single temperature cycle depends on joint
geometry, material properties of tube and tubesheet, the
temperature range, and the maximum rolling pressure initially
applied.

Figure 1(a) shows the configuration considered. We idealize
the configuration by a set of concentric membrane elements in
two-dimensional plane stress as shown in Fig. 1(b). There are
N membrane elements (layers) with the innermost element
being the tube; the remaining membrane elements represent
the tubesheet. The elements (layers) are numbered starting
from the tube (element 1); the ith element (layer) has mean
radius r; and thickness #4;.

The following assumptions are made for the detailed
analysis:

(a) the tube and tubesheet materials satisfy the Von Mises
Yield Criterion;

(b) no creep occurs in the temperature range considered;

(c) temperature changes in tube and tubesheet are uniform
and have the same value at any stage in the simulation.

Figure 2 is a free-body diagram of the ith layer showing

‘“‘internal’’ pressure p;_;, and ‘“‘external’’ pressure p;. The
average radial and circumferential stresses in the jth layer are

1 ;
O == > i1 +p) ¢y
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Nth  Layer
{isnth Layer
i Layer
2nd Layer
1st Layer

/
T=Tube Thickness

1-b

Tube-to-tubesheet joint model

R _ _ )
Gy By drg-tira apdr h, Wi —p)+o, )

1 S rith;i/2 r;

When rolling pressure p, is changed by an increment p, and
system temperature 7" is changed by an increment 7, the
interface pressure p; (between layer / + 1 and layer /) undergo
incremental changes p;. The incremental changes in o,;, 04 are

26,i=—=(D;_1 +Dy) 3)
05 =1 — D) 7" + (05— 0,)(€gi — €3} + 0 O]
i
where incremental strain relations for each layer are:

R 1. , , :

oS = E(ari_yaﬂi)+eri+aiT (5)
i !
o | . .

— =€y = E(UOi—VUri)+e8i+aiT (6)

i
For ideal plasticity, subject to plane stress conditions, the
plastic strain increments é,;, €,; are given as [5]

i

LN N
€= _31_(20” —0y); €g= ?(2‘79,' —0,) Q)
Using equations (5) and (6) in equation (4) yields oy, as

agj——orj> . ) [ogj—a,j 1 r ]
1— =0 _ — e 4 =
( 267 /TP Tag T2 Ty,

J

. Og;i — Opj 1 r; s
Nt RCRL
Jj=1,2,..,N 8)

where Aé; = é, — €,;. Note that in equation (8), the term (o
— 0,)/G; represents large deformation effects during elastic
loading. Since this term is of order 103 for most metals, we
conclude that large deformation effects may be significant
only during plastic action as represented by the final term in
equation (8).

The displacement increments at the inner and outer surfaces
of the ith membrane layer are given in terms of strain in-
crements as

) A
. . i . i
U = riéoi‘"z—fm uit “ri€0i+'§"€ri )]

Compatibility equations for a unit idealized as N layers are

the N—1 equations
Ui =u

i=1,2,..,N-1 (10)

We eliminate strain increments in terms of stress in-
crements, and then eliminate stress increments in favor of the
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Table 1 Tube/tubesheet scenario®

Initial Contact

Loading

Tube remains
elastic

Tube yields
prior to
contact

Specified value
of maximum
applied pressure
is reached

All layers yield
before maximum
roll pressure
obtained

Tube yield
strength controls
maximum roll
pressure

Tubesheet yield
strength controls

Unloading

Tube and tube-

sheet remain
elastic

Tube and tube-
sheet both
experience
reverse yield

Either tube or
tubesheet
experiences
reversed yield

Tube/tubesheet
contact is lost

Temperature Changeb

[(ar — a)ATZ 0]

Tube is elastic or under-
goes no stress change

Tubesheet can be either
elastic or plastic

No change in stress
state occurs as the
temperature load is
imposed or removed

Tube/tubesheet
contact is lost

maximum roll
pressure

“Note that the result in any column may lead to any of the results in the succeeding columns.

Scenarios apply to thermal loading or unloading.

interface pressure increments. After some algebraic
manipulation, we evolve N—1 linear compatibility equations
from equation (10) in the symbolic form

A; Py +Bipi+C; Pii +Di Nk + DNy ki
=R, T 1n

where i=1,2, ..., (N—1); N being the number of layers
including the tube as the first layer. The coefficients A;, B,
C;, D;,, D}, R; are functions of the current state; no ap-
proximations save plane stress, and the membrane assump-
tion need be employed to obtain equations (11).

The artificially inserted parameter k;, i = 1,2, ., N,
satisfies the conditions:

ki =0
ki = 1

if the ith layer is elastic during the increment;
if the jth layer undergoes plastic flow during the
increment.

(12)

If all layers remain elastic, since k; = 0,7 = 1,2, . ., N,
the N—1 compatibility equations are solvable for the N—1
interface pressure increments. Once yielding has occurred in
one or more layers, equations (11) are insufficient to deter-
mine interface pressure increments. Additional equations are
obtained from the Von Mises yield condition. If ¢, is the
uniaxial yield stress in the ith layer, then

Ugiz—ogio',i+0',i2$0yi l=1,2 .y N (13)

with the equality sign applying when yielding occurs. In in-
cremental form, for any yielded layer, we may write

i=1,2,..., M (14)

where M is the number of yielded layers during the increment.
Using equations (3), (8), and introducing the artificial
parameter k; so that we can extend equation (14) to all of the
layers yields the N equations

ki(Fpi_+Mp)+HN=0, i=12,...,N (15)

Equations (11) and (15) are 2N—1 equations for the in-
cremental pressures p;, i = 1,2, .., N—1 and the plasticity
proportionality parameters \;, i = 1,2, .., N at each stage
of the simulation. Herein, we assume that the boundary
conditions are py = 0; p,, T are specified loading and
temperature increments.

The tube rolling process we consider consists of tube
loading by p, to initial contact with the tubesheet, a sub-
sequent loading and unloading (p, # 0, T = 0) to establish a
room temperature residual contact pressure, and a subsequent
temperature cycle (o, = 0 and 7 # 0) to examine thermal

(204 — 0;) 09 + 0y — 01) 5, =0,
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effects in the absence of creep. In the developed computer
code a total of 10 layers are modeled. The first layer
represents the tube and has an initial layer thickness equal to
the nominal tube thickness. The remaining nine layers
modeling the tubesheet are given a specified thickness suf-
ficient to model the extent of the region under study.

Since clearance c¢ exists initially between tube and tubesheet,
we must establish the stress state when tube-to-tubesheet
contact first occurs. Tube yield will occur prior to tubesheet
contact if ¢/ry > o0,,/E;. If the clearance c is small and tube
yield does not occur prior to tubesheet contact, then the roll
pressure and the tube stress state at contact are found from
the incremental relation

Ar1+Ahl/2=C (16)
Since the tube 1emains elastic
Ary =r,(Ady, —vhAa,,); A =h;(Ad,, —vAdg,) an
From equilibrium
Ao, = —po/2; Ay =por /hy —po/2 18)

Thus, the tube state and roll pressure p, at contact may be
established.

If the tube yield occurs prior to tubesheet contact, then
equation (13) applied to a single elastic increment, with
stresses given by equation (18), yields the tube yield pressure
Po as
_ oy hy /1

(1 —hl/Zrl +h12/4r12)l/2
The additional change in roll pressure, tube mean radius 7|,
and tube thickness #,, occurring during the increment be-
tween first yield and tubesheet contact may be obtained by
using equation (16), equation (15) (written for the first layer),
and geometric relations for Ar,, Ah;, in terms of pgy, A
considering the tube layer to have yielded. Solving for pgy, A\
associated with the geometry changes between tube initial
yield and first contact permits establishment of the tube state
and rolling pressure at the onset of tubesheet loading.

Po (19)

Application

A computer program simulating the roller expansion
process based on the previous theoretical incremental analysis
has been developed. The program includes determination of
the tube state at initial contact with the tubesheet, simulation
of a loading and unloading stage with p, # 0, T' = 0, and
simulation of a temperature load and unload cycle with p, =
0, T # 0. During the increments, within each stage of loading
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Table2 Simulation with 70:30 Cu Ni tubing

Clearance ¢ = 0.127 x 1073 (m); layer thickness = 2.159 x 1073 (m); T,y = 20°C;
Toperaling = +200°C
Tube Tubesheet 1 Tubesheet 2
Material 70:30 Cu Ni 90:10 Cu Ni Steel
E(kPa) 151.69% 105 124.11x10° 200 % 108
a,(kPa) 124.11x10°  103.43x10° 206.86 x 10°
a&(1/°C) 16.2x 1076 17.1x 1076 11.7x1079
tube O.D. (m) : 0.01905 0.01905
tube thickness (m) 1.2446x 1073 0.7112x1073
Table3 Cu-Ni/Cu-Ni simulation Table 4 Cu-Ni/steel simulation
Tube yields prior to contact Tube yields prior to contact
(1) Loading stage . (1) Loading stage
Rolling pressure  Contact pressure Plastic layers Rolling pressure  Contact pressure Plastic layers
(kPa) (kPa) 12345678910 (kPa) (kPa) 12345678910
17532.0 0.0 1000000000 9600.9 0.0 1000000000
40000.0 21343.8 10060000000 40000.0 29543.5 1000000000
120000.0 101787.6 1111000000 120000.0 110034.6 1000000000
135550.0 119403.9 1t11111100 143300.0 135870.3 1100000000
Contact pressure reaches tubesheet critical value Rolling pressure reaches tube critical value
(2) Unloading stage (2) Unloading stage
120000.0 108273.4 0000000000 120000.0 115648.9 0000000000
40000.0 51172.1 0000000000 40000.0 46302.5 0000000000
0.0 16109.3 1100000000 0.0 9219.6 1000000000
(3) Temperature change stage (3) Temperature change stage
Temperature Contact pressure Plastic layers Temperature Contact pressure Plastic layers
(Degs.C.) (kPa) 12345678910 (Degs.C.) (kPa) 12345678910
(A) Temperature goes from room temp. to operating temp. (A) Temperature goes from room temp. to operating temp.
20.0 16109.3 1100000000 20.0 219.9 1000000000
120.0 14723.3 0100000000 120.0 92259 1000000000
200.0 13605.4 0100000000 200.0 9231.0 1000000000
(B) Temperature goes from operating temp. to room temp. (B) Temperature goes from operating temp. to room temp.
200.0 . 0100000000 200.0 9231.0 1000000000
120.0 14807.4 0000000000 120.0 5402.8 0000000000
20.0 16102.4 1000000000 20.0 561.4 0000000000

2440 indicates elastic behavior. ‘‘1*’ indicates a yielded layer.

or unloading, proper account is taken of geometry changes
and plastic behavior.

The main purposes of this program are; (a) to determine the
residual contact pressure after unloading or after temperature
change for a given joint, so as to predict the joint holding
power; and (b) to analyze the effect of various parameters and
load cycles on the final residual contact pressure obtained.
Table 1 shows the possible scenarios that evolve based on a
considerable number of simulations using the computer code.
Prior to discussing specific simulations, we consider the effect
of tube and tubesheet yield strengths on limiting roll and
contact pressure. We apply equation (13) to the inside surface
of the tube, and to the inside surface of the tubesheet; we
recognize that at those locations o, = —pp and —p., where
Dr, Dc are the roll and contact pressures, respectively. Solving
equation (13) for g4, we find that in order that g, be real at the
locations considered, pr, pc must be limited to the values

Pr=~4/30r; p. <~V4/3 ors.

(20)

Table 5 Thermal cycling of a Cu-Ni/Cu-Ni assemblage

—-200°C

Tube yields prior to contact

(1) Loading stage

ar, ors refer to the uniaxial yield stress of the tube and
tubesheet material, respectively. We note that the limiting
values are independent of the outer radius assumed to model
the tubesheet. In fact the limiting result is usually found
associated with the solution of the infinite sheet with an in-
ternally pressurized hole [5] and leads to the conclusion that
there is a limiting radjus beyond which plasticity cannot
propagate. In our finite radius tubesheet model, the limits
apply, but the extent of the plastic region depends on the
particular geometry assumed. In fact, if the assumed outer
limit is taken too small, complete plastification with sub-
sequent unlimited deformation occurs prior to achieving the
limits of equation (20). To verify the computer code, the
layered model has been used to simulate a configuration with
zero clearance, and tube and tubesheet both of the same
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Rolling pressure  Contact pressure Plastic layers
(kPa) (kPa) 12345678910
17532.0 .0 1000000000
40000.0 21343.8 1000000000
120000.0 101787.6 1111000000
135550.0 119403.9 1111111100
Contact pressure reaches tubesheet critical value
(2) Unloading stage
120000.0 108273.4 0000000000
40000.0 51172.1 0000000000
0.0 16109.3 1100000000
(3) Temperature change stage
Temperature Contact pressure Plastic layers
(Degs.C.) (kPa) 12345678910
(A) Temperature goes from room temp. to operating temp.
20.0 16109.3 1100000000
-80.0 16111.5 1100000000
—200.0 16114.2 1100000000
(B) Temperature goes from operating temp. to room temp.
~200.0 14.2 1100000000
-80.0 14448.2 0100000000
20.0 13051.0 0100000000

material. The results are compared with the Lame solution for
the thick cylinder. The circumferential and radial stress
distributions obtained during the verification study are in
excellent agreement with the exact solution given by Lame.

Table 2 presents geometry and loading conditions fora
typical construction. Two simulations are performed with the
tube material 70:30 Cu-Ni in both analyses. The thermal cycle
is the same for both simulations considering both heat up and
cool down. Tables 3 and 4 show the computer output from the
two simulations.
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Table 6 Titanium tube/muntz tubesheet properties
Tube Tubesheet

Material Titanium Muntz
E(kPa) 102.736 % 106 103.425 x 10°
o,(kPa) 275.8x 10 137.9% 10
d(17°C) 8.64% 1076 20.88x 1076
tube O.D. (m) 0.01905 :
tube thickness () 0.7112x 1073

¢=0.127%x 1073 (m),
Troll =20°C,

Table 7 70:30 Cu-Ni/Muntz simulation

layer thickness =2.159% 10~ 3(m)
Toperating =200

Table 8 Titanium/Muntz simulation

Tube yields prior to contact
(1) Loading stage

Rolling pressure  Contact pressure Plastic layers
(kPa) (kPa) 12345678910
9600.9 0.0 1000000000
40000.0 29547.3 1000000000

120000.0 110061.2 1110000000
143300.0 135939.4 1111000000
Rolling pressure reaches tube critical value
(2) Unloading stage
120000.0 117149.2 0000000000
40000.0 47243.5 1000000000
0.0 9157.4 1000000000
(3) Temperature change stage
Temperature Contact pressure Plastic layers
(Degs.C.) (kPa) 12345678910
(A) Temperature goes from room temp. to operating temp.
20.0 9157.4 1000000000
120.0 4562.0 0000000000
200.0 851.6 0000000000
(B) Temperature goes from operating temp. to room temp.
200.0 851.6 0000000000
120.0 4562.0 0000000000
20.0 9157.4 1000000000

Note that with tubesheet No. 1, the limit on roll pressure is
governed by the tubesheet yield strength. There is a significant
plastic region in the tubesheet at the peak load. For the Cu-
Ni/Cu-Ni combination, reversed yielding occurs in both tube
and tubesheet, while for the Cu-Ni/steel combination,
reversed yield occurs only in the tube. For the Cu-Ni/Cu-Ni
combination, there is a 15.5 percent reduction in tube-
tubesheet contact pressure at the operating temperature of
200°C; the tubesheet layer remains in a yielded state. Upon
removal of the temperature load, the full contact pressure is
essentially recovered. In the Cu Ni/steel combination, the
limit on roll pressure is governed by the tube material and
there is a relatively limited plastic zone in the tubesheet.
During the thermal loading to 200°C, there is essentially no
change in stress state during loading to operating tem-
perature; removal of the thermal loading causes a significant
reduction in final tube-tubesheet contact pressure. We will
discuss the rationale for this behavior shortly, but we note
here that the primary difference in behavior during thermal
loading is caused by the difference in sign of (a7 — oy )AT in
the two simulations. Table 5 presents the results of the Cu-
Ni/Cu-Ni assemblage during thermal cycling to a lower
temperature of —~200°C. Notice that during cool-down the
contact pressure remains essentially unchanged and there is a
significant drop in contact pressure when ambient tem-
perature is recovered.

The final simulation demonstrating the application of the
developed code involves a Muntz tubesheet with either 70:30
Cu-Ni tubes (see Table 2) or titanium tubing. The
Muntz/titanium combination is popular in the retubing of
power plant condensers. Table 6 summarizes the
tube/tubesheet properties and Tables 7 and 8 show the results
of the simulation. Note the considerable reduction in residual
contact pressure with the titanium tubing. Because of the
significant difference in thermal expansion coefficients
between titanium and Muntz, the increase in temperature to

Journal of Applied Mechanics

Tube yields prior to contact
(1) Loading stage

Rolling pressure  Contact pressure Plastic layers
(kPa) (kPa) 12345678910
21343.2 0.0 1000000000
40000.0 18048.9 1000000000
120000.0 96279.5 11000060000
182850.0 159219.7 1111111100
Contact pressure reaches tubesheet critical value
(2) Unloading stage
120000.0 105941.2 0000000000O0
40000.0 38172.6 0000000000
0.0 5315.2 0100000000
(3) Temperature change stage
Temperature Contact pressure Plastic layers
(Degs.C.) (kPa) 12345678910
(A) Temperature goes from room temp. to operating temp.
20.0 315.2 0100000000
85.0 -23.9 0100000000
No contact between tube and tubesheet Joint fails.
Oy la*
1.0
L
-0.75
- 0.50
-0.25
®
ar/g*
I
!
’—-0,25
l
!
[ F-050
L | —Eq.(20)
[’ —-0.75
®.
®Ly
-~
--1.0

Fig.3 o, versus gy Cu-Ni/Cu-Ni. o* = 137.9 x 10%kPa (20000 psi)
85°C causes complete loss of tube to tubesheet contact

pressure.
It remains for us to show why the contact pressures remain
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essentially unchanged during thermal loading under certain
conditions. We consider specifically the Cu-Ni/Cu-Ni
assemblage reported in Tables 3 and 5. During any portion of
the thermal cycle, the state of stress in the tube layer is

P (2’1 )
p= =0, — 41
o > 0g =0, 7

Figure 3 shows the o,, 0y plane for the entire load-unload
thermal cycle. Point 2 is the beginning of the mechanical
rolling stage subsequent to tube/tubesheet contact. Point 3 is
the end of the loading state. Point 4 is the end of the
unloading stage and show that the tube undergoes reversed
yield. Equation (21} is plotted on Fig. 3 through point 4 and
the origin. Regardless of the ‘‘direction’’ of thermal loading,
the tube state must lie along this line (if we neglect small
geometry changes). Point 5 is the end of the thermal load
cycle reported in Table 3; the return to room temperature
simply causes a return to point 4 in Fig. 3. However, when we
lower the temperature in the run shown in Table 5, the tube
cannot satisfy equation (21) and the yield condition unless
there is no change in state of stress; that is, the tube state of
stress would like to move to but cannot go beyond the yield
limit. An examination of expanded stress output for Table §
indicates that the state of stress remains essentially unchanged
throughout the entire unit while the temperature falls to
—200°C. Subsequent heating of the unit causes the point in
stress state to move toward the origin in an elastic manner.

Conclusions

A special purpose incremental method has been outlined to
study the tube to tubesheet rolling problem. It is based on a
two-dimensional model, permits large deformations, elastic
plastic behavior in both loading and unloading stages, and
thermal cycling. Because of its incremental formulation,
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@1

extension of the model to incorporate high temperature
inelastic effects is not difficult. The results presented
demonstrate the influence of some of the material, geometric,
and loading parameters on the final tube to tubesheet contact
pressure. While the developed computer code is useful by
itself as a design tool, it is also intended to be used as a
mechanism for obtaining simplified rules for publication in
design codes. The results obtained herein vividly demonstrate
that attention should be given to the effect of thermal cycling
when considering pull-out strength of tube-to-tubesheet
joints,
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A general formulation is presented for the analysis of stress wave propagation

through the junction of rectangular bars. The analysis is applied to the case of two
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bars meeting at right angles and is used to theoretically predict the passage of
longitudinal waves through the junction. An experimental investigation of the
phenomenon, using dynamic photoelasticity is conducted with a high-speed

multiple spark gap camera of the Cranz-Schardin type. Three different geometries
are tested to represent the most common types of junctions encountered in practice.
In each of the cases, experimentally obtained results are observed to be very con-
sistent with the theoretical predictions.

Introduction

The study of stress wave propagation through an in-
tersection point is of paramount importance in structural
design under dynamic loading conditions. To a great extent,
the stability of a structure to a sudden applied seismic or
aerodynamic disturbance depends on the stress wave trans-
mission characteristics of the various joints that comprise the
structure.

There is considerable literature concerning both the
theoretical and experimental analysis of stress wave
propagation in straight and curved bars [1-5]. However,
much less work has been reported on the stress wave
propagation through joints. In 1971, Mandel, Mathur, and
Chang [6] analyzed the simultaneous transmission of flexural
and longitudinal waves around a rigid right angle joint and
employed strain gages to obtain experimental data. In 1972,
Lee and Kolsky [7] considered the stress wave propagation
through an obtuse angle and a right angle corner and again
employed strain gages to obtain experimental data. In 1975,
Atkins and Hunter (8] studied the transmission of a
longitudinal wave around a right angle corner and employed
strain gages to verify theoretical results. Very recently
Desmond [9] considered the stress wave propagation through
a junction of three bars and he also used strain gages to obtain
experimental data.

The first purpose of this paper is to present a general
formulation for the analysis of stress wave propagation
through a general junction and to specialize the theory to a
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few simple cases. The second purpose is to verify the
theoretical results experimentally using the technique of
dynamic photoelasticity.,

Theory

General formulation for wave transmission through a junc-
tion of three bars.

The bar junction itself is modeled as a rigid block as shown
in Fig. 1. The bars are assumed to all be of the same thickness
but may differ in width and material construction. In this
paper, elementary theories are employed to represent the
propagation of both longitudinal and flexural waves.
However, the results can be suitably modified to include the
effects of rotary inertia and transverse shear. Fig. 2 shows the
free body diagram and the coordinate systems employed in
the analysis.

Considering the flexural wave equation first, the
displacement y, must satisfy the relationship:
94y, A, 9%y,
Uy 85 0020 (j=1,2,3) (1)
ax; EI, ot

Notmgthatcjz =E//P/,Aj = 21/t and Ij = (2/3)f1j3 (1)

takes the form:
&, 3
+ L =0 (j=1,2,3 2
ax;* c;21;r 8 Y ) @
Equation (2) can be readily solved by the technique of Laplace
transforms [10]. For this case we define

o

' f’j(xj,s)-—-so e "y, (s;,t)dt 3)

where the bar represents the transformed value.

For homogeneous initial conditions, the flexural wave
equation (2) transforms to a fourth-order ordinary dif-
ferential equation given by
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21,

rzh/e /

/ . BAR 2,B2,p2

BAR 3,B3,f3

\— BAR |,B1,p,

21,

Fig.1 A general junction of three bars

Ye
X2
Y3
X3
Fig.2 Free body diagram and coordinate systems
Y L3 gm0 @)
dxj4 Cj2 1j2 a
The preceding differential equation has the solution
Y (x;,8) =A;(s)e 1085y
+B,(s)e” (1-DBiVsxj C; (s)e(l+i)ﬁj\/§xj
+Dj(s)e(1—i)ﬁj\/§xj (5)
where
4 3 21 2 d 2 — 1
B; —ch ;4 and F=-1.
For bounded values of )_"j(xj,s) we should have C;(s) =
D;(s) =0.

To determine A(s) and B(s) we examine the end con-
ditions for the beams. The moment and shear force are given
by

M,=E.I [ @Y, ] 6
) R P (©)

- &Y,
QJ_EJ‘]/[——dxja ]Xj:o 7

From equations (5) and (6) we get
A;(s)—B;(s)=|M;|/2E; ®)

From equations (5) and (7) we get

] ©

Aj(S)+Bj(S)=W{W s

Additional information can be obtained if we examine the

kinematics of the junction. In Fig. 2 the three motions x, y,

346/ Vol. 51, JUNE 1984

14

Fig.3 Symmetrically branched junction with extended middle bar

a=90° (EXPT)

21
& v
. // 4
v,
21
Fig.4 “L” junction .

and 6 of the center of gravity of the block must satisfy the
following equations.

dy; -
L{leszo = -6 (10)
L{Y;}y=0 = XSin®;YcosO; - Od, (11)

where L { ] represents the transformed values; ©; represent
the angular position of the bars as defined in Fig. 1; d;
represent the moment arms of the shear forces Q, about the
center of gravity of the block in Fig. 3.

From equations (10) and (11) we obtain

1 9, Mj] e -
ZBjZEjIj [6j53/2 +~;—— = Xsin@; — YcosO; — d; (12)
o1 o, M, ] .
-t =0 13
2, E;1; [BJS Vs )

To obtain a complete solution we must consider next the
longitudinal wave equation. We denote the incident and
reflected longitudinal wave fields in bar 1 by &, and &,
respectively. We let &, and $; represent the transmitted
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Fig.5 Dynamic isochromatics for Case 1: T intersection

Fig.6 Dynamic isochromatics for Case 2: + intersection

longitudinal wave fields in bars 2 and 3, respectively. The
basic longitudinal wave equation is given by
?U; 1 3y _0
dx2 ¢
Where the U;’s are the longitudinal displacements in the three
bars given by

14

Ul(xl,t)=d>,(t+ %1—)+CI>R(t— -’Cii—) as)
Uptez,) =5 (1 j—;) 16)
U, (s ,f) = &5 (r— ’;—:) an

The kinematic constraint at the junction in transformed

notation is

L{U,}Xj:(): - Xcos©; + Ysin®; (18)
From (23)-(26) we obtain
$; = — XcosO, + ¥sino; 20)
The normal compressive force T is given by
au;

From (21) the expressions for Ty, T,, and T3, in trans-
formed notation, become

Ty =2spic;1,1,(®;— &r) (22)

Finally we write the equations of motion for the rigid junc-

Journal of Applied Mechanics

Fig.7 Dynamic isochromatics for Case 3: L intersection

tion. These are two equations of translation in the X and Y
directions and one of rotation ©. Referring to Figs. 1 and 2
the equations of motion in transformed notation are

E (Tjcos0;,— Q;sin®;) = — Ms2 X (24)
j=123
(7T;5in0, — Q;c0s0;) =Ms*Y (25)
F=123
and
Y, (M +e;Ti+d,Q)) =Is*® (26)

Jj=1,23

where M and [ are the mass and the moment of inertia of the
rigid junction; e; are the moment arms for the forces T; about
the center of gravity of the block.

The basic equations of the problem are then equations (12),
(13), (19, (20), and (22)-(26). These represent 15
simultaneous equations involving 15 unknowns viz, ®g;
®;(j=23); T;, M;, Q;(j=1,2,3); and X,Y and ©. It is
assumed that the incident longitudinal wave field ¢; is known.
The foregoing set of simultaneous equations can be written in
matrix notation as follows.

[Gllc]=[R] @7

In the preceding equation [G] is a 15 x 15 matrix charac-
terizing the junction geometry as well as the constitution of
the bars forming the junction. [c] is a column matrix of the 15
unknown variables while [R] represents the incident wave
field ®; which is assumed to be known. The expanded version
of (27) is given in Appendix A. Thus, if the incident wave field
&, is specified, it is possible to obtain the remaining
unknowns from (27). In what follows the preceding general
formulation is applied to three special cases.

JUNE 1984, Vol. 51/ 347
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“emm CONCAVE
FRINGES

,~==—A|R SHOCK

,,f"'"i"-DETON ATION

A

Fig.8 Enlargement of a fringe pattern for Case 2

Substation B —
Case 1 Symmetrically Branched Intersection. This Substation mq//\/—m
problem has been treated by Lee [11] using Fourier series. \J__ 1" e
Hence, only the highlights of the solution will be presented | L

here. For details the reader is referred to {12, 13]. For this case ) i

forl, = I3,and

0,=360-0, 7 ! "
12¢ |
T2=T3 \%_
M, =—-M,
L 10k
Q=04

82T2 +e3T3 =0
dy Q2 +dsQ3 =0
0, =M, =0=Y=0 |

In this case the number of unknowns reduces to seven,

880 x FRINGE ORDER)
¢

6 A &~—~A Substation |A

simplifying the problem enormously. The ratio of intensities B
of the transmitted and incident wave field is given by ~ ©—=0 Substation 1B
- x
& ]
_2 = 8 4+
@1 o
1 &
=
b,c0s0; 1 tan©,sinB, (3, 25> Ms T 2F
by cosO2 2b,(K, —8,"5) 2b,cos0,
(28)
' 1 1 1 1
_ } ) . 0] ‘10 20 30 40 50
Hence, when ©, = 90 deg ®, = &;/0 = 0. This implies that TIME (. SECONDS ) —»
for a T junction there would be no transmission of the N ) . . : ;
longitudinal stress wave. This is borne out in the experimental 50 60 70 80 90 100
results where it will be observed that the transmitted wave is TIME (xS) AFTER DETONATION
predominantly flexural in character. Fig.9 Time history of incident wave amplitude observed at Station 1
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Fig.11 Sample fringe order assignment procedure

Case 2: Symmetrically Branched Intersection With an
Extending Middle Bar. The geometry is shown in Fig. 3.
Due to the extending middle bar one more unknown is in-
troduced corresponding to the force T, in the extending bar.
The governing equations are

b +dp=~X=8&, 29)
®, = — XcosO, =&, (30)
&, — &z = Ti/sh, (3D
&, = &; = Ty/sb, (32)
d,=T,/sb, (33)
T, +2T,c0s0, —20sin0, — Ty = — Ms2 X 34)
In th; foregoing equations b; = 2e;Cil;t;. Solving these
equations we can get the ratio ¢,/ ®; as
8
®, 1
—b,c0s0, N 1 - tan®,sin®,3,%s2  (Ms—b,)
b, c0sO, 2b,(Ky = B313) 2b,cos0,
(35)
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Fig.12 Time history of incident wave amplitude observed at Station 1

Once again &, = 0 when 6, = 90 deg and there would be
no transmission of the longitudinal stress wave into the
perpendicular branch. However, there would be a trans-
mission of the longitudinal stress wave into the horizontal bar
as per (33). This is borne out in the experimental results to be
described later.

Case 3: Right Angle Corner. This case has been earlier
considered in [6, 8]. The geometry of the right angle corner is
shown in Fig. 4. The general information developed earlier
can be applied to obtain similar results as in [6, 8]. In this case
the number of unknowns is 11, viz, &z, ®;,x,v, 6, T, T;,
M, M;,0,, Q;. If we furtherassume 1; = 15 = 1;¢, = #; =
t then we can derive an explicit relationship between &, and
®,. This development is described in detail in [8] and here we
summarize only the final results.

If &, is specified in advance then the transmitted
longitudinal stress wave field ®, is given by the convolution

relation
d t—7\ do;
&, = S F ( —_ ) g
3 0 T dr 4

In the preceding equation the function F is independent of
the lateral dimensions of the bars and is tabulated in [8]. The
function F will be employed to predict the transmitted stress
wave for the experimental verification.

(36)

Experimental Analysis

Dynamic photoelasticity was employed, for experimental
verification of the derived equations. The photoelastic
technique has a distinct advantage over other experimental
techniques in that being a whole field technique, data can be
acquired at several stations simultaneously to obtain a more

JUNE 1984, VoI. 51/ 349
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Fig.16 Transmitted wave profiles observed at Station 2

complete description of a dynamic event. The application of
the photoelastic technique to stress wave propagation
phenomena is summarized by Goldsmith [14], Dally [15], and
Clark and Durelli [16]. In the present experimental in-
vestigation the recording of the dynamic isochromatic fringe
patterns was accomplished by a multiple spark gap camera of
the Cranz-Schardin type. This camera is described in detail by
Brillhart and Dally [17]. In all the experiments Homalite 100
was employed as the photoelastic material. All the bars had
the same lateral dimensions of 25.4 mm X 6.35 mm (1 in. X
1/4 in.). The longitudinal stress wave was generated by ex-
ploding a small charge of lead azide at the end of one of the
bars. The longitudinal stress wave pulse duration was ap-
proximately 35 usec with a rise time of about 10 usec.

Three geometries were studied experimentally and some
typical dynamic isochromatics are shown in Figs. 5-7. A
typical isochromatic pattern associated with a propagating
longitudinal stress wave is shown in Fig. 8. It can be seen that
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Fig. 19 Comparison of predicted and observed transmitted

longitudinal wave

there is a definite concave curvature of the leading fringes
with respect to the direction of propagation. This indicates
that plane sections of the bar are warping since otherwise
there would be no curvature of the fringes. As indicated in
Fig. 8, the fringe order increases from the leading fringe with
the curvature of the successive fringes continuously changing
from concave to convex before culminating to a point where
the fringe order is maximum. Continuing along the bar
further downstream, the fringe order again decreases to zero
indicating the end of the stress pulse. Fringe curvatures
associated with longitudinal stress wave propagation have
also been observed previously by Sutton [18], Feder, et al.
[19], Durelli, et al. [20], and Jones, et al. [21]. While the
fringe patterns associated with a propagating longitudinal
stress wave are symmetric about the axis of the bar, asym-
metric fringes imply the presence of flexure. This can also be
seen in Figs. 5-7 after the incident wave has passed through
the junction. In the subsequent sections experimental data for
each of the three cases is analyzed for comparison with the
theoretical predictions made earlier.

Case 1: T Intersection. Of the 16 dynamic isochromatics
recorded from the Cranz-Schardin camera, 14 photographs
were chosen for analysis. These records covered the interval
from 50 usec to 168 usec after the explosive charge was
detonated. The time variation of the fringe order was
recorded at the Station 1 as given in Fig. 9. This station is
located at a distance of 2 in. from the junction to avoid in-
terference from any reflected waves from the junction. At this
station the fringe order was recorded at two substations 14
and 1B as shown in the figure. As can be inferred from this
figure, the duration of the longitudinal stress wave pulse is
about 40 usec. Also, the maximum fringe order on the axis of
the bar exceeds the corresponding value at the edge (sub-
station 1A4). To verify the theory developed earlier, another
station, Station 2 was selected as shown in Fig. 10. At this
station, two substations 24 and 2B were also selected on
either side as shown in the figure. The procedure for assigning
the fringe orders is shown in Fig. 11.

JUNE 1984, Vol. 51/ 351
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Fringe order histories were recorded at each of these two
substations and the results are given in Fig. 10. From this data
it is possible to extract the wave profiles of both the trans-
mitted longitudinal stress. wave as well as the transmitted
flexural stress wave. The transmitted wave profiles are also
shown in Fig. 10. As can be seen from this figure, the trans-
mitted longitudinal stress wave is very weak. This result is in
good agreement with the theory which predicts no trans-
mission of the longitudinal stress wave through the junction.
Is we assume the overall experimental error to be within 10
percent (1 fringe out of 10) then the transmitted longitudinal
stress wave is within the range of experimental error in
measuring the fringe order.

Case 2: Cruciform Intersection. The analysis for this
case was performed in the same manner as for Case 1. The
results of the analysis are shown in Figs. 12 and 13. In
agreement with the prediction from equation (35) there is no
appreciable transmission of the longitudinal stress wave in the
perpendicular bars. The strength of the transmitted
longitudinal wave is within experimental error of measuring
fringe orders. It is also interesting to note from Fig. 12 that
the transmitted longitudinal stress wave amplitude in the
continuation is about 40 percent of the original amplitude
before any interaction with the junction.

Case 3: L Intersection. This case is perhaps the most
complicated of the three cases considered due to the trans-
missions of both the longitudinal and the flexural wave
through the junction. The results of the data analysis are
given in Figs. 14-19. In this case a significant transmission of
the longitudinal stress wave was noted. This is shown in Figs.
15-17 where it can be seen that the transmitted longitudinal
wave amplitude is as much as 25 percent of the incident wave
amplitude. Furthermore, this longitudinal stress wave is also
accompanied by the transmission of a flexural wave. This is
evident from the asymmetry in the fringe pattern about the
axis of the bar as shown in Fig. 7. For the purpose of com-
paring theoretically predicted and experimentally observed
transmitted wave profile for the longitudinal stress wave,
readings at two stations, 2 and 3, are considered as shown in
Figs. 16 and 17. The procedure for assigning the fringe orders
is shown in Fig. 15. Equation (36) was utilized for the
determination of the transmitted longitudinal stress wave. It
can be seen from Fig. 19 that there is good agreement between
the theoretically predicted and the experimentally observed
transmitted longitudinal stress wave.

As an interesting digression the photoelastic data was
analyzed to evaluate the validity of assuming the junction to
be a rigid block. For this purpose two different stations, 2 and
3, were selected at distances of 1/2 in. and 1 in. from the inner
corner of the junction. The experimentally observed trans-
mitted longitudinal wave was recorded at both these stations
for comparison with the theoretical prediction given by
equation (36). It can be seen from Fig. 19 that Station 3 gives
a better agreement with the theory than Station 2. While the
maximum discrepancy at Station 3 is about 10 percent the
maximum discrepancy at Station 2 is 50 percent. This result
indicates that the rigid junction model is a good ap-
proximation for points farther away from the junction than
points near the junction. A more detailed analysis of this
problem is currently being attempted to shed more light on the
validity of this assumption.

Conclusion

A general formulation has been developed for analyzing the
transmission of a longitudinal stress wave through a junction
of three bars. This general formulation has been specialized to
the case of a junction of perpendicular bars. Experimental

352/ Vol. 51, JUNE 1984

results have been presented for three types of junctions of
perpendicular bars. These results were compared with the
theoretical predictions concerning the transmission of
longitudinal stress waves through junctions. Good agreement
was noted between theory and the experiment.
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Plates

Cylindrically Orthotropic Circular

The stability analysis of axisymmetrical equilibrium states of geometrically
nonlinear, orthotropic, circular plates that are deformed by multiparameter

loading, including thermal influence, is presented. The dynamic method (method
of small vibrations) is used to accomplish this purpose. The behavior of the plate in
different cases is revealed. In particular, it is shown that two different types of
snapping processes can occur. The values of frequencies of small eigenvibrations
from various cases have been calculated. These investigations are realized by
numerical and qualitative methods. Here only the numerical results are presented.

Introduction

Axisymmetrical deformations of geometrically nonlinear
cylindrically orthotropic circular plates under a
multiparametric system of loading where thermal stresses are
also taken into account are investigated. In theses cases there
may be nonuniqueness of equilibrium states, i.e., for the same
parameter of loading or temperature, there can exist a number
of equilibrium states for the plate. This effect may lead to a
loss of stability by snapping of different kinds. Therefore,
there is a necessity to study the stability of all the possible
equilibrium states.

The numerical method used for investigating the stability of
the equilibrium states is the well-known dynamical method
(method of small vibrations). To the best of our knowledge,
this method was used for the first time for nonlinear shells in
[1] and systematically for isotropic geometrically nonlinear
plates and shells in [2-5].

Since eigenfrequencies (eigenvalues) are the basis for this
method (when the eigenfrequencies are real the examined
equilibrium states are stable in the corresponding sense, and
when they are imaginary these states are unstable) it is
necessary to find them for plates under different conditions.
As opposed to the linear case the eignfrequencies in question
are dependent on the values and character of the external
cross forces and temperature.
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In this paper we present some of the results obtained from
the numerical investgations of both the aforementioned
problems in axisymmetrical state of the art. Equilibrium
states, buckling modes or vibrations of nonsymmetrical types
are not considered here.

Basic Equations

The constitutive Hooke-Neumann law for the material is
given by (1) [6, 7].

Er“*qs =E¢“r, o

where &4, G,, are the components of deformations and
stresses, respectively, in any layer at a distance z from the
middie plane, which is at the same time also the neutral one.
E.,, p4, and o, , are Young’s moduli, Poisson’s ratios, and
the thermal coefficients in radial and circumferential
directions, respectively, when the centers of orthotropy and of
the middle plane coincide. These parameters are taken to be
independent of the stationary temperature 7(p,z), which can
be a function of z and of the dimensionless radial coordinate p
= r/a, and a is the radius of the plate,

For an arbitrary anisotropic body, the following inequality
holds [6]:

o g+, <3/2 @

If we take into account the Kirchhoff-Love hypothesis of
incompressibility of the plate in the z direction, inequality (2)
reduces to (3).

b+ g <1 6)

The corresponding basic equations of the Karman-
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Marguerre type may be written in this case in the form (4) and

()17, 8].
[

2 1— 2
Lelw (o) =k2{ - [N

82 (p,7)
2 R

2p

~N' 0] @
Li[6(p,7)]= —ﬂUp ola(p,7) —s W(p,7)1dp
p Lo v
+P=0(p)0(p,7)]
124 (l_kZ ﬂr)"‘kzlybz(l— r)
= ; ) M (p)
FUHRYIM (0) ] O=psl); OsT<em). ()

7 = t(g/h)? is the dimensionless time and ¢ is the real one. A
const. is the thickness of the plate, and the gravitational
acceleration is denoted by g. Derivatives with respect to p and
7 are denoted by (') and (), respectively. The dimensionless
specific mass on one unit of the plate’s area iss = va*/E.h; vy
is the material’s specific gravity.

kK*=E,/E,; V'=o4/0; ma=12(1-pp,)=12(1 - p2 k?)
©
172 172
Nr=a,| | Tnds Mr=o|  Tds c=wn.
Q)]
The operator L is
P Lg()=02( )" +0( ) ~k*() (®)

The basic unknowns are the membrane stress function w
and the angle of revolution 6 of the normal to the plate’s
midplane. All the parameters of this problem are expressed by
these functions (see, for example, the relationships referred to
in the following where the corresponding dimensional
(physical) quantities are denoted by asterisks).

The membrane normal forces and bending moments are
given by the formulas:

N, (p,7) =N}*(p,7)a?/E,h* = w(p,T) /p;
Ny (0,7) =Ny (p,7)a*/E . h* = ' (p,T)
M, (p,7) =M*(p,7)a*/D,h=8(p,7)
+p,k20(p,7) /p—12a% (1 + kY2, Y M1 (p) /R,
My (p,7) =M3(p,7)a*/D,h=K*[0(p,T)/p+ 0" (p,7)]

®

—12a2k* (Y + u, ) M1 (p)/ B2}
D, =E,/[12(1 — u,2k?)] = E,h*/m, (10)

The angle 6 and bending moment M, are positive when the
convexity of the plate’s deformed shape is directed downward
as well as that of the positive direction of the z-axis.

The radial and vertical displacements of the midplane’s
points are given by the formulas:

U=U*/h=paces/h=phlw’ — p,k*w/pl/ak? +ay?pNy/h
(11

W=W*/h=—§:odp+g; E=W(0); 0(r,r)=—W(p,7)
(12)

Positive U is directed away from the plate’s center; Wand £
are positive in the direction of the Z-axis, and are measured
from the undeformed midplane.

The dimensionless distributed and concentrated loads,
which are positive in the downward direction, are expressed
by the relationships

q{p,7) =q*(p,7)a*/E, h* (13)

The most frequently used boundary conditions can be
written in the forms:

P(r)=P*(1)a*/27E,h*.

w(0,7) =60(0,7) =0; (0<7<™) a4
o (1,7) +Bio(l,7) =v,(7);
0" (1,7) +B3,6(1,7) =y, (7); (15)

o;, Bi, 7v; (1) are given quantities. The conditions (14) ensure
the continuity and boundness of the functions w and 9 in the
vicinity of the center. The condition at p = 1 for w charac-
terizes the degree of mobility of the boundary supports in the
plane of the plate. The second relationship (15) characterizes
the type of the support affecting the bending conditions at the
boundary. Nine basic combinations of the boundary con-
ditions are given in Table 1,

If necessary, the initial conditions (for 7
written in the recognized standard form.

The preceding described state of the art of the problem in
question is valid for a plate without a central hole and with
only inertia due to the defections W taken into account. But
there are no definable obstacles to adding the influence of
other factors, if necessary. Similar state of the art is true for
the different cases of constructively orthotropic plates, for
example corrugated or reinforced ones.

0) may be

Method and Algorithm
In this section are described the method and, based on it,

Table1 Nine basic combinations of the boundary conditions

Mobile support with
Mobile support without active normal boundary Immovable
boundary forces forces N(7) support
Condi- ap=1; Bl=—u,k2;
tions a? 22
a1 =0; B=1; v =0 ar=0; Bi=1L 7y (1)=N(7) Y1=- h_zk VENT(D)
forw
Condi w=1; By=pk w=1; B=pk’
tions wy=0; Br=1; v,=0 Y2 (1) =M(7) +
for 124° 212 124° 2.2
Y2=0 A+ &7 )M (1) + E A+k7y p ) M1(1)
Clamping Hinged support without Hinged support with

boundary bending moment

boundary bending moment M (7)
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the numerical algorithm used to find the frequencies of the
plate’s small eigenvibrations around some of its equilibrium
states. Let this equilibrium state be characterized by the
functions w. {(p) and 0. (p) = — W’ .(p) (see (12)). Thus, the
aforementioned small eigenvibrations can be expressed in
forms (16)

w(p,7) =w. (p) +ow(p,7); W(p,7) =W, (p) +W (p,7)*
6(p,7)=0.— (6W) =86.(p) +80(p,7),

where 8w, W, and 86 are small dynamic perturbations. Then,
substituting in equations (4) and (5) the functions w, W, and 6

(16)

by their expressions (16) and linearizing afterward with.

respect to the aforementioned perturbations, we will obtain
the following two linear equations for them:

e [s] p(oirao

k2
Lg(8w)=——20.60; Lg(80)=
Y 14

+ w80+ 0. 6w]; amn

The corresponding boundary conditions resulting from
(14), (15), and (16) are given by (18).

Sw(0,7) =0660(0,7) =0; o 6w’ (1,7) + B, 6w(l,7)=0;
a, 00" (1,7) +B,00(1,7) =0; (18)

The homogeneity of equations (17) and (18) is a con-
sequence of the invariability of loadings and temperature field
when the crossing from the investigated equilibrium state to
the corresponding eigenvibrations takes place.

It is convenient to attach to the second equation (17)
another form which does not obviously contain 6W. For this
we can substitute W by 60 (using (12)) and integrate by parts
the integral of (17). Then, we get (19) instead of (17).

oLy (6w) = — k26,580,
s 2 1 P
oLy (88) =m"{ 5 32 [ngo 60dp—-p2S0 660dp

]
+SO p250dp] +wcae+0caw} (19)

We shall look for the periodic solution of (19) in the form

8w (p,7) =Q(p)sin pr;  86(p,7) =Q(p) sinpr. (20

Then, after separation of variables, we will obtain the
corresponding equations for € and Q and the boundary
conditions for them.

pLK(Q)=—'k200Q; pLK(Q)=mu(ch+ecQ)_

X4 - 0dp+ | 20an] @y
where
N=mspt; A={ 0dp. @)
20 =0O)=0; o, 0'(1)+ 6,21 =0;
00" (1) +6,0(1) =0, @3)

Thus, we obtained naturally a linear boundary value
problem for the eigenvalues A\?. It is obvious that if the first
(lowest) eigenvalue N2 will be positive (the corresponding
frequency, p, will be real), the investigated equilibrium state is
stable in the small (as regarding small perturbations). In the
opposite case, the equilibrium state is unstable. When \? = 0
we have a critical case from the point of view of stability in the
small. It is very important to underline here that stability in
the small does not preclude stability in the large (as regarding

356/ Voi. 51, JUNE 1984

the large perturbations), but instability in the small means
instability in general.

Before proceeding to the description of the algorithm of
numerical solution of the aforementioned boundary value
problem we must note the following two properties.

(@) The operator Ly contains a singularity at the point p=0

" (see (8)). Because of this, the solutions to (19) which satisfy

the condtions (23) at o =0 have in neighborhood of p= +0 the
order p* and then they may be represented there in the form
(24) 9].

Qo) =apX; Qp)=bp*; (0=psAp< <) (24)

(a, b are some constants.)

() The preceding formulated boundary value problem is
linear and homogeneous and, in consequence, the functions Q
and Q may be found only with exactness to an arbitrary
factor.

Taking into account the singularity of Ly we will begin the
realization of the numerical solutions from the point
p=Ap< <1 instead of p=0. Then, on the basis of (24):

kQ(Ap) =Q' (Ap)Ap;  kQ(Ap) =Q'(Ap)Ap

On the basis of the second property, we can multiple Q by
an arbitrary factor taking 4 = 1 (see second relation (22)). In
this case, since the value of 4 is fixed beforehand, the system
(19) is no more homogeneous and then the solutions of this
system (where 4 = 1) may be represented as follows:

Qo) =0 (Ap) M, (p) + Q" (Ap) N, (p) +C (p);
Q) =0 (Ap) M3 (p) + Q' (Ap) Ny (p) +C2 (p);
O<hp=p=])

@25)

(26)

where Q' (Ap) and Q' (Ap) are arbitrary constants. The
initial parameters 2(Ap) and Q(Ap) are considered known,
since they may be found by (25) when Q' (Ap) and Q' (Ap)
are given. The basic functions M;, N;, and C; may be found
by solving any three arbitrary independent Cauchy problems.
We have used for numerical solutions of these Cauchy

Z-K=1and .2

700 L—
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movable support
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[ | | |
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Fig. 1 First eigenvalue A? versus loading (boundary moment M) for
k=0.5,1, and 1.2 and hinged supports

0
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Fig. 2 Prebuckling and postbuckling behavior of the plate when only
edge thrust N acts. Hinged support. k=1.

N
- 700
- 600
K=12 K=10 ds00
K=05
! 1 1 I i 1 i 1 1 1 ] 1
-6 -5 -4 -3 -2 -1 | 2 3 4 5 6N

Fig.3 Firsteigenvalue )\f versus edge thrust ¥ fork =0.5,1, and 1.2

problems, the Euler’s method of fourth order with corrections
at each step, described in [10].

Knowing the functions M;, N;, and C;, we can fulfill the
conditions (23) at p=1 and obtain two linear algebraic
equations for Q' (Ap) and Q' (Ap). In this way we will get the
unknown @(p) and Q(p) which are dependent on A2, The
eigenvalues A\ are finally the roots of the equation (27)

1
A=1,i.e.,50 Q(p)dp=1 @27

The numerical determination of w,. and 6, are realized by

the “‘shooting’’ method [4] or by the so-called ‘‘deformation
map’’ technique [9].

Some Numerical Results

First, we will give the graphs of the dependence of the first
eigenvalues A} on loading which is the edge bending moment
M (see Fig. 1). We took, for example, £ = 0.5, 1, and 1.2, and
., = 0.3. (For all specific cases examined in this paper
Poisson’s ratio is p, = 0.3.) The supports are hinged, both

Journal of Applied Mechanics

movable (without boundary thrust N), and immovable. The
thermal stresses are not considered here. These data
demonstrate that the frequencies of the small eigenvalues
depend on the value of the crossloading. This fact, typical for
geometrically nonlinear objects, is caused by membrane
stresses neglected in the usual linear theory of bending. All the
eigenfrequencies are real; that is a natural consequence of the
stability of the plate’s equilibrium states in this case. The
increase of k leads to the increase of A\ for fixed values of M.
This phenomenon is explained by the rise of the plate’s
bending rigidity together witht the increase of k. The same
effect of k£ on the behavior of the plate is also observed for
static deformations. The graphs of A} (£), not presented here,
are also monotical by increasing curves, but are concave and
not convex as the lines A} (M). §¢ = W(0) is the displacement
of the plate’s center (see (12)).

We shall now examine the behavior of the plate under
membrane edge thrust N when the thermal stresses are absent.
The graph of N (&) shown in Fig. 2 is typical of this case. Here
K =1 and the contour is movable hinged. All branches of the

JUNE 1984, Vol. 51/ 357
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Fig. 4 Prebuckling and postbuckling behavior of the plate when the
edge thrust N has an eccentricity e = — 0.1m, . Hinged support. k =1.
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Fig.5 Firsteigenvalue )\ﬁ versus ¢ = W(0) for the case shown on Fig. 4.

k=1and 1.2,

graph of N(£) of. the parabolic type represent the post-
buckling deformations. The intersections between these
branches and the axis /N determine the classical critical values
of N, when the stability loss by transition from the com-
pressed (flat) forms of the plate to axisymmetric bending
ones occurs. (In [9] are given the first three critical values of N
for different £ and movable hinge.)

The investigations of the stability (by the aforementioned
algorithm) of the equilibrium states in this case demonstrate
that all the equilibrium states denoted on Fig. 2 by “x*’ are
unstable. For them all the eigenvalues A7 are negative. For the
other states the lowest eigenvalues A} > 0 with the exception
of first critical (bifurcation) states (when N = N;) where A}
= 0. These effects are given by the graphs on Fig. 3. Each
curve on this figure is formed by two branches which start
from the corresponding bifurcation point (A} = 0). The right-
hand branches correspond to the flat prebuckling equilibrium
states, and the left-hand ones characterize the postcritical

358/Vol. 51, JUNE 1984

stable bent states. For the precritical states the rise of NV leads
to the increase of A} linearly. In the postcritical region these
relationships are, naturally, nonlinear. Thus, after bifur-
cation the plate’s route may be only one of the two branches
of the graph of N(£) (see Fig. 2) starting from N;. This
assertion is valid only for axisymmetric deformations which
are the subject of this paper. In general, secondary bifur-
cation phenomena may occur; these are linked with the
transition from the axisymmetrical bent (postcritical) state to
the asymmetrical (wrinkled) one. The foregoing is partly
investigated in [12] for isotropic plates.

Now we will examine the influence of the eccentricity e of
the edge thrust NV on the phenomena studied in the previous
case. The eccentricity may be interpreted as an imperfection
of the loading. Let us say that the edge support is movable
hinged. Then, to the thrust N is added a boundary moment M
= eN, where ¢ > 0 when N is below the middle plane of the
plate and e < 0 in the contrary case. In Fig. 4 is given an
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Fig. 6 Plot of M(t) for the thermoelastic case when the thermal in-
fluence is characterized by parameter vy The crossloading is g =30
and k =0.5.

example of the graph of N(¢) whene = — 0.1 m,and k = 1.
Here are the typical phenomena generated by the foremen-
tioned imperfection. The bifurcation points disappear,
converting into limit ones, which is in complete concordance
with Koiter’s theory of postcritical behavior of structures with
imperfections (see, for example, [13]). Our investigations of
the stability of the equilibrium states demonstrate that all
states noted by “x’’ on Fig. 4 are unstable. The graphs A (£)
for stable states and two values of £ are drawn on Fig. 5. Each
graph consists of parts C and D. The C parts correspond to
the curves of the type 4 shown on Fig. 4 and branches D
correspond to the lines of the type B (see Fig. 4). There is a
minimum point on all C lines (see Fig. 5). It may be shown
that this minimum point corresponds to the inflection point
that exists on each curve of the type A (Fig. 4).

It may be shown that similar behavior of the plate takes
place also in another case of imperfection of the loading,
when aside from N, the moment M = consteacts in-
dependently from N.

In conclusion we will examine a group of thermoelastic
problems when in the basic equations (4) and (5) all the
thermal terms are absent, Then the influence of the tem-
perature field is transferred by the boundary conditions (see
Table 1). This may occur particularly in the following two
cases:

(@) An isotropic plate (k = ¢y = 1) where the temperature
is a function only of z. Then N and M are constant.

(b) An orthotropic plate that is thermally isotropic (k #
1, ¥ = 1) and T is an even function of z and does not depend
on p. Thus Ny = const. and M, = 0. .

We took for example the following specific case from the
abovementioned second group of thermoelastic problems, &

Journal of Applied Mechanics

K=05;
q=30
X|=-3.0
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Fig.7 Plot of )\f versus ¢ for the case shown in Fig. 6 and ¥, == 3

= 0.5. Acting here are edge moment M and uniform pressure
g = 30. The support is an immovable hinge. The boundary
conditions at o = 1 are: (see Table 1)

0’ (1) + p, k20D =M; o (1)—pk*w(l)=y
= —a2k?y?Ny/h? (28)

From the three graphs of M(£) drawn in Fig. 6 the
dynamics of the alteration in the behavior of the plate when
the value of v, < 0 decreases (fixed ¢ = 30) can be seen. Even
v, > — 1.5 all the equilibrium states are stable because from
each value of M only one equilibrium state exists. For y; < —
1.5 this uniqueness is disturbed which generates a stability loss
of some of the equilibrium states. It is characteristic of the
examined case that there are two branches in each graph
M(£) when v, < —1.5. (See the graph M(§) for v, = —
3.0.) One of these has a classical ‘“‘open’’ form 0 with one
maximum and one minimum, and the other branch is a
complicated closed loop L. Our investigations of the stability
of the equilibrium states demonstrated that all the states
denoted by ““x’’ on Fig. 6 are unstable. These conclusions are
confirmed by the data for M, when y; = —3.0 given on Fig.
7. Curves 0 and L on Fig. 7 correspond to the ones in Fig. 6.
Thus, there exist snapping processes of two different types.
Snapping from one part of the open branch 0 to another part
on the same curve, or snapping to a ‘‘stable’’ part of the loop
L can occur. If the first type of snapping can be realized by
continuous change of M, the second type of snapping can
occur only by means of intervention of a certain external
factor. The last makes it possible for the plate to overcome the
corresponding energetical barrier by transitions from a part
of the “‘open”’ line to the “‘stable’” one of the loop.

In some of our earlier works we investigated cases for
isotropic spherical shells with a clamped support loaded by a
constant pressure (with no thermal stresses), where similar
loops were obtained. We found that all the equilibrium states
corresponding to the points of the loops were unstable [4, 5]
contrary to the aforementioned case.
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Now we can easily analyze the case when all the data of the
previous example remain the same, except g whose sign is
reversed.

Let v, = —3.0 (as previously) and ¢ = —30. It may be
proven by qualitative methods (see [9, 11]) that the graph of
M(£) for this case (g = —30) may be obtained from the
graph drawn in Fig. 6 (where ¢ = 30) by reflection of the
latter relative to the origin of the coordinate system. In other
words, both the graphs of M(¢) (for ¢ = 30 and —30) are
situated symmetrically relative to the points £ =.0, M = 0.
Denoting the parameters of the equilibium states with ¢ +30
by additional indices ‘‘1”’ and °‘2’’, respectively, we may
affirm the following. For each equilibrium state w;, 8, there
exists a corresponding state w,, 6;, linked with the first by
relation (29)

0,(p,7) = —0,(p,7) (29)

and then N\;; = N;. Because &, = — &, and M, = —M,, the
corresponding points of the plane (£, M) are situated sym-
metrically relative to the origin £ = 0, M = 0.

1]

W] (,D,T) sz(p,'r);

Concluding Remarks

A numerical algorithm for investigations of the stability
phenomena in the small of the equilibrium states of or-
thotropic plates was developed. This algorithm is based on the
well-known dynamic method for studying the stability of
equilibrium states. Thanks to its general character, this
algorithm may be used for different cases, as for example,
investigations of the stability of corrugated or constructively
orthotropic axisymmetrically deformed plates and shells of
revolution. The numerical solutions of a series of specific
problems was preceded by some qualitative investigations of
the properties of the studied solutions, similar to the in-
vestigations described in [9, 11]. These properties, which have
an independent interest, also serve as the means of a
qualitative control of the numerical results. They will be
discussed in a separate paper.

360/ Vol. 51, JUNE 1984

The numerical solutions presented for a number of
characteristic specific problems have demonstrated that the
plates can lose stability by snapping of different kinds when
they are subjected to multiparameter loading including the
influence of the temperature field.

References

1 Archer, R, R., and Famili, J., *‘On the Vibration and Stability of Finitely
Deformed Shallow Spherical Shells,”” ASME JOURNAL OF APPLIED MECHANICS,
1965, pp. 116-120.

2 Shilkrut, D. L., and Vyrlan, P. M., “‘Stability of Geometrically Non-
Linear Shells’’ (in Russian), Doklady Akademii Nauk SSSR, Vol. 225, Dec.
1975, pp. 782-785. (English translation, Sov. Phys. Dolk., Vol. 20, 1976, pp.
865-867.)

3 Vyrlan, P. M., and Shilkrut, D. I,, ““Stability of Equilibrium Forms of
Geometrically Non-Linear Spherical Shells’’ (in Russian), Isvestija Akademii
Nauk SSSR, Mechanika Tverdogo Tela, Vol. 4, 1978, pp. 170-176. (English
translation Mech. Solids USSR, 1978, pp. 153-159.)

4 Shilkrut, D. 1., and Vyrlan, P. M., Stability of Non-Linear Shells (in
Russian) Polytechnic Inst. of Kishinev, 1977.

5 Shilkrut, D. ‘“‘Solution of Some Stability Problems in the Theory of
Geometrically Non-Linear Shells, Israel J. Techn., Vol. 18, 1980, pp. 76-83.

6 Lekhnitskii, S. G., Theory of Elasticity of an Anisotropic Elastic Body,
Holden-Day, San Francisco, 1963.

7 Stavsky, Y., ‘Non-Linear Axisymmertric Deformations of
Heterogeneous Shells of Revolution,”’ in Contribution to Mechanics, Abir, D.,
ed., Pergamon Press, Oxford, 1970, pp. 181-194,

8 Lekhnitskii, S. G., Anistropic Plates, Gordon and Breach, New York,
1968.

9 Shilkrut, D., ‘‘Investigations of Axisymmetric Deformations of
Geometrically Non-Linear Orthotropic Circular Plates,”’ to be published in the
Intern. J. of Non-Linear Mechanics, Vol. 18, 1983, pp. 95-118.

10 Shilkrut, D., *“A Method for the Approximate Solution of Ordinary
Differential Equations’® (in Russian), Zhurnal Vychislitelnoi Matematiki i
Mathematicheskoij Fiziki, Vol. 5, 1965, pp. 615-625. (English translation:
USSR Computational Math. and Math. Phys., 1966, pp. 41-55.)

11 Shilkrut, D, 1., Problems in Qualitative Theory of Non-Linear Shells (in
Russian), Polytechnic Institute of Kishinev, 1974.

12 Cheo, L. S., and Reiss, E. L., “Unsymmetric Wrinkling of Circular
Plates,”” Quart. Appl. Math., Vol. 31, Apr. 1973, pp.75-91.

13 Hutchinson, J. W., and Koiter, W. T., ““Postbuckling Theory,”’ Applied
Mechanics Reviews, Vol, 23, 1970, pp. 1353-1366.

Transactions of the ASME

Downloaded 02 May 2010 to 171.66.16.25. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



Finite Amplitude Vibrations of a
Body Supported by Simple Shear
Springs

The exact solution of the problem of the undamped, finite amplitude oscillations of

M. F. Beatt a mass supported symmetrically by simple shear mounts, and perhaps also by a
. . beatty : . , . ,
o , smooth plane surface or by roller bearings, is derived for the class of isotropic,
Department of E[Tg.meer_ltng ?’I,fCh?mlfS' hyperelastic materials for which the strain energy is a quadratic function of the first
niversily of Rentucky, and second principal invariants and an arbitrary function of the third. The Mooney-

Lexington, Ky. 40506 Rivlin and Hadamard material models are special members for which the finite

motion of the load is simple harmonic and the free fall dynamic deflection always is
twice the static deflection. Otherwise, the solution is described by an elliptic integral
which may be inverted to obtain the motion in terms of Jacobi elliptic functions. In
this case, the frequency is amplitude dependent; and the dynamic deflection in the
Sfree fall motion from the natural state always is less than twice the static deflection.
Some results for small-amplitude vibrations superimposed on a finely deformed
equilibrium state of simple shear also are presented. Practical difficulties in
execution of the simple shear, and the effects of additional small bending defor-
mation are discussed.

1 Introduction

Rubber shear mountings are used widely for engine sup-
ports, machine foundation springs, bridge support springs,
dockside fenders, and for shock packaging supports, for
example. In many applications the shear spring suspension
system must ensure high probability that the load it supports,
particularly fragile goods or sensitive equipment such as
rocket engines, guided missles, and electronics components be
cushioned against effects of sometimes severely rough
treatment received in shipment and handling, or in unusual
operating conditions such as encountered in dockside fender
use. Deflections ranging from 2 to 30 or more inches in some
applications are not uncommon [1, 2}; an amount of shear up
to unity is quite practicable; and packaging shock deflections
up to twice the thickness of the shear block frequently are
encountered. In fact, the large deflections attainable with
shear mountings apparently is a property that make them very
efficient shock absorbers. Consequently, study of the large
static and dynamic deflections and finite amplitude vibrations
of a load supported by shear springs has practical value and
may be useful in their design.

Usually, however, the deflections are assumed to be suf-
ficiently small so that the response of the springs is that of a
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linearly elastic solid. Contrariwise, it is well known that the
elastic response of rubberlike materials generally is not linear,
and certainly the potential deformation such materials may
experience is not small enough that the linear theory may be
applied. Moreover, shear springs may carry substantial static
loads that produce initially large deflections; but the effect of
this initial (possibly) finite shear deformation on superim-
posed small-amplitude oscillations has been ignored in design
considerations and in the usual vibration studies, the latter
being based on the differential equation for a linear oscillator
[3, 4]. We recall also that one method of evaluating the elastic
constants of rubberlike materials is to set up a simple
vibrating system in which a mass is supported by a specimen
of the material; but the measurements of the small-amplitude
vibrational frequency used to evaluate the elastic modulus
from the frequency formula generally may be inaccurate if the
initial deformation has been ignored. Fortunately, some
rubbers in a shear test exhibit a substantially linear shear
stress/deflection behavior for deformations up to 30-40
percent, although afterward, nonlinear deviations often are
evident. Nevertheless, it would be of interest in the design
analysis of shear mountings to know for a fairly large class of
rubber like materials the extent to which the finite amplitude
vibration problem may be solved exactly, to determine the
precise manner in which the initial state of deformation af-
fects the frequency of small superimposed oscillations of the
load, and to analytically understand the linear response
observed in certain shear tests.

In this paper, the exact solution of the problem of the
undamped, finite amplitude, free oscillations of a mass
supported symmetrically by simple shear springs and possibly
also by a lubricated plane surface or by roller bearings is
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derived for the class of hyperelastic materials for which the
strain energy is a general quadratic function of the first and
second principal invariants and an arbitrary function of the
third alone., This class includes the Mooney-Rivlin and
Hadamard material models as special members. The
frequency equation for small oscillations superimposed on a
finitely deformed equilibrium state of simple shear is
presented; and the nature of the linear response in shear for
certain materials is described.

The problem is formulated in the next section, wherein we
will begin with the general result that for an arbitrary isotopic
elastic material the shear stress exerted on a simple shear
spring is a nonlinear function of the amount of shear [5].This
structure is applied in Section 3 to study the vibration of a
mass supported by simple shear springs made of either a
Mooney-Rivlin or an Hadamard material. It happens that
these are special members for which the shear stress is
proportional to the amount of the simple shear; consequently,
the undamped, finite amplitude motion of the load is always
that of a simple linear oscillator with constant frequency that
depends on the shear modulus. More generally, however, the
shear stress is a nonlinear function of the amount of shear,
and for this case the finite amplitude motion is described by
an elliptic integral whose transformation to standard form
and representation in terms of Jacobi elliptic functions is
derived. The period, hence the frequency, of the vibration is
shown to be a function of the amplitude in the elastic response
function.

The special case of motion of a mass supported by simple
shear springs and by a lubricated horizontal surface or by
ideal roller bearings is presented in Section 4. Inversion of the
integral in terms of a single Jacobi elliptic function is
provided.

In the usual free vibration test, the load is held at the
maximum deflection and then released. However, no special
simplification is achieved by consideration of this or other
particular cases, so the general solution of the problem for
arbitrary initial data is solved in Section 5. It is shown,
however, that in the motion starting from the undeformed
rest state of the shear springs, the dynamic deflection always
is less than twice the static deflection. This result differs from
the Mooney-Rivlin and Hadamard examples for which the
dynamic deflection always is equal to twice the static
deflection, a property typical of every linear oscillator. Also,
for comparison, we may recall that Beatty [6] has found for a
neo-Hookean suspension (compression) spring that the
dynamic deflection always is larger (smaller) than double the
static deflection. Of course, the shear springs considered in
our study have symmetric response to the amount of shear.
The practical difficulty that an ideal simple shear generally
cannot be achieved will be discussed in Section 6.

2 Energy Equation for a Body Supported by Shear
Springs

Let a rigid body of mass M be supported symmetrically by
identical shear spring mountings consisting of rubber blocks
or right prisms of length L and cross-sectional area 4 bonded
to the body at one end face and to parallel rigid end supports
at the other, as shown in Fig. 1. The inertia of the shear
springs will be neglected, as usual; and we will suppose that
each shear mount executes an ideal, homogenous, simple
shear deformation of amount o(¢) at time ¢ so that the only
relevant forces exerted by the springs on the load M are due to
the shear stresses at their parallel bonded interfaces. In ad-
dition, we will allow that the load may be supported by a
smooth plane surface making an angle 8 with the horizontal
plane.

For an isotopic elastic material, it is known [cf. 5; Sections

54 and 61] that the Cauchy shear stress T for a simple shear is -

determined by
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Fig.1 Model of a symmetrical simple shear spring suspension system
T=ou(c?). 2.1
The shear response function
p(0%)=B1(0*) = B_1(d%), withu(0)=p,, (2.2)

is defined in terms of two other elastic response functions
Br(e¢®) = Bp(l,, I, I), T = 1, —1, that depend on the
principal invariants I, = I, = 3 + 0%, I; = 1. If the material
is assumed hyperelastic with a strain energy function W( )
= W(l,, I,, I,), per unit undeformed volume, with W(0) = 0
in the undeformed state, these response functions are defined
by

—ny 129V - 12w
Bi(c*) =214 oL, B_1(d?) = —2I; oL,
Hence, it is easily seen that (2.1) may be written as 7 =
20dW/d(o*). We will require that (2.3) satisfy the empirical
inequalities 8; > 0, B_; < 0so that u(¢?) > O for all ¢; thus,
by (2.1), this means that the shear stress on the shear blocks
always is in the direction of the shear.

Since the only forces that act on M are the reduced
gravitational force, the pair of hyperelastic spring forces, and
the workless normal tractions at the bonded shear mount
interfaces, the motion of M is conservative with constant total
energy E given by ,

2.3)

E= %MLZ&Z +2ALW (0*) — MgLasind.
Here the ¢=d/dt and g denotes the local apparent ac-
celeration of gravity.
If initially the mass is ‘“displaced”’ an amount o(0) = gy
and released with “‘speed” 6(0)=v,, equation (2.4) yields the
speed at time ¢;

(2.4

2 2 172
50 =0(0) = [~ L2 W (&) = W ()] + 2770- )
0
(2.5)
in which,
2Apy g sinf
2 = 2 =
PO= p = 7 (2.6)

and the appropriate sign is to be chosen as usual. The time
required for M to move from oy to o(¢) follows from (2.5);
with the proper sign, we have
' S" do
o v(g) "
Of course, it is expected that the motion is periodic between
two extreme shear states o(#,) = oand o(#,) = 8 > o defined
by the physical condition that the speed v (o) must vanish at

.7
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these states; hence, the periodic time of the finite amplitude
free vibrations of M may be found from (2.7).

Finally, let us assume that a small displacement §(¢) is
superimposed on a specified static shear of amount oy so that
o(t) = o5 + 8(f). Then substitution of this relation into (2.4)
followed by expansion of W (¢?) in a power series to include
only terms to the second order in 8, and differentiation of the
result with respect to time yields the linéarized differential
equation for the small-amplitude vibrations of the mass
superimposed on the primary, possibly finite, static shear
state; namely, § + w?(os) & = 0, where

2p}
w(aS)zJT[W’(S)+2S W’ (S)] 2.8)
0

defines the small amplitude circular frequency of the
vibration. Herein a prime denotes differentiation with respect
to S = o%.

It is apparent that in general the frequency (2.8) depends on
the nature of the material and the amount of static shear,
which is determined by the equilibrium conditon

4405 W' (S) =2A05p(S) =Mg sind. 2.9)

We notice that ogu(S) depends on only the ratio of the load
to the interface area. For motion in the horizontal plane § =
0, o5 = 0, and 2W'(0) = puo; hence, the frequency (2.8) for
small-amplitude motion about the zero shear state has the
constant value w = p, given by (2.6). This result depends on
the shear modulus p,, the spring design parameters 4 and L,
and the load M. On the other hand, for the general case when
p # 0, (2.9) may be used with (2.6) to eliminate the load from
(2.8); we thus obtain

W' (S)y+2S W (S)
as W' (S)

This result shows that the frequency will be independent of the
area of the bonded spring-load interface, and it decreases
monotonically as the length of the springs grows larger. 1t is
clear also that if (2.10) is to be used in design analysis of a
simple shear spring suspension system or in a program of
dynamic tests to determine the isotopic elastic response
function of the spring material used, it is important that the
initial static stretch be accounted for; otherwise, possibly
serious errors may be introduced. Of course, it is recognized
that the frequency also may be affected by perturbations from
the ideal simple shear state assumed here; and we will return
to this point later.

w(as)=p (2.10)

3 Application to Some Special Materials

Let us consider a styain energy function of the form
W(I,1, 1) = C (I, = 3) + Co(I, = 3) + C5 (I, - 3)?
+Cy(l, = + Cs(ly =), -3 + (L), (3.1

in which C,, ... ,Cs are certain constants and f(I;) is an
arbitrary smooth function of I; that vanishes in the un-
deformed state where I} =1, =3, I; =1. In particular, when
Cy=C;=C5=0, equation (3.1) describes an Hadamard
material; and if, in addition, the material is incompressible so
that I; = 1in every deformation, it defines a Mooney-Rivlin
material.

Since a simple shear is isochoric, it follows from (2.2),
(2.3), and (3.1) that for both the Mooney-Rivlin and
Hadamard models

p(0?)=2(C, +Cy)=po and W(02)=%M0 7. (3.2)
It is evident from (3.2) and (2.4) that the motion is given by &
+ p% 0 = p*. Therefore, the motion of M for every Mooney-
Rivlin and Hadamard material, and any others for which

Journal of Applied Mechanics

(3.2) holds in shear, is simple harmonic with circular
Jfrequency p, given by (2.6), and with symmetric displacement

6(t)=0(t) —os=Dcos (pot+¢) (3.3)

about the equilibrium shear state og = (p/py)*. The am-
plitude D and phase ¢ are constants fixed by the initial data. If
M is released from rest at the undeformed state, then e=0,
D= —ygs, and it is seen that for Hadamard and Mooney-
Rivlin shear springs, the maximum dynamical shear
deflection in the free motion of M from the underformed rest
state is twice the static shear deflection, a property typical of
every linear oscillator.

It can be shown easily that in the simple shear deformation
the more general function (3.1) and the shear response func-
tion (2.2) assume the simple forms

1
wX)=> (poX+mX? and p(X)=po+2m X

with X=¢?, (3.4
inwhich gy = 2(C, +C3) and u; = 2(C; + C, + Cs), the later
vanishing for the Mooney-Rivlin and Hadamard cases. The
empirical inequality u(¢?) > 0 for all ¢* = 0 requires that
both yy > 0 and g; = 0 hold. Of course, henceforward, we
need only consider x; > 0. We note that all of the results
derived in the following will hold for any isotropic elastic
material whose strain energy in a simple shear has the form
(3.4).

3(a) Superimposed Small-Amplitude Oscillations. We now
recall (2.10) for the small amplitude vibrational frequency of
a mass superimposed on a finite static shear, and with the aid
of (3.4) obtain the following frequency formula

(05) = 1+6u* o%
WLISIEN G+ 20" i)

in which u* = u;/ue. In particular, for the Mooney-Rivlin
and Hadamard material models, we set y* = 0 in (3.5) and
find the well-known elementary formula

(3.5)

g sinf
LO’S

typical of every linear oscillator. The graph of (3.5) for the
frequency ratio R = w/p versus the amount of static shear is
shown in Fig. 2 for several values of u*e[0,o0). It is seen that
Sfor the same amount of static shear, the frequency ratio in-
creases montonically with p* from it lower limit value N1/ 0y
to its asymptotic limit value \3/0g, and it decreases
monotonically with increasing values of the static shear
deflection. Hence, the superimposed small-amplitude
vibrational frequency of a load will be lowered by increasing
the static shear deflection or by decreasing p*.

More significantly, we observe that equation (3.6) is a
universal relation value for every Mooney-Rivlin or
Hadamard material independently of its shear modulus. We
have seen in (3.3) that (3.6) holds for all amplitudes. Con-
sequently, no longitudinal oscillation test can either
distinguish these two material types from one another or from
any other material of their own variety. On the other hand, if
(3.6) is not satisfied in every simple shear motion of a given
isotropic hyperelastic material, that material can not be
modeled either as a Mooney-Rivlin or an Hadamard material.

3(b) Finite Amplitude Ocillations. Let us now return to our
finite amplitude analysis. Substitution of (3.4), into (2.5) and
use of (2.4) yields '

w(os) =p/Nog= (3.6)

v(o) = £p {E+2(p/p,)* o—jpo” —d*}1? 3.7
for o € [o, B]. The energy constant £in (3.7) is defined by
Vo \ 2
E=E(wo)=( =) -20/pi oo +ich ot ()
1
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and, by definition,

1 2 24
p=— =B, =R 3.9
o B L
Hence, the time in (2.7) is determined by
(= S do (3.10)
pid0 VQ(o) '
where for convenience we write '
Q(0) =E+2(p/pYo—jid* —o*=— (6—a) (¢c—B)
(0—vi N o—72), (3.11)

in which a, B, v, v, denote the four roots of this quartic.
It is seen from (3.11) that Q(0) = E; and dQ(g)/deo = 0
only at the unique equilibrium state o determined by

2

20%+ﬂas—(£‘) =0.

j 4

Moreover, d2Q/do* < 0 for all real values of ¢. The nature of
the roots in (3.11) depends only on the value of E(ay, vp); and
there are three cases which are schematized in Fig. 3. It is
shown easily that for all values of E, equation (3.11) has only
two real roots; these are the extreme shear displacements £
and « for which v(a) = v(8) = 0. The special “‘free fall”

(3.12)

3
(=%
3
" 2 -
x
g
S
®
>
©
C
[
=)
g 1 f
[T
R=/Trog H¥=0
S (Mooney - Rivlin
and Hadamard Models)
o L | 1 I ] ] ]
o] | 2 3 4 5 [ 7 8

Static Shear Deflection, og
Fig. 2 Frequency ratio versus the amount of static shear for

superimposed small-amplitude vibrations and variation in the modulus
ratiop* = 1/

problem for which (o, vg) = (0,0) has E = 0. Since Q(g) =
(v/py)? = 0 for all physically admissible values of ¢, only
those parts of the curves situated above the horizontal line
Q(o) = 0in Fig. 3 have physical relevance. Thus, it is evident
that in every case of physical interest there are four distinct
roots; two are real, and two are complex conjugates which for
‘all cases are denoted by v, and v, in (3.11). Consequently, the
integral (3.10) is identified as a general elliptic integral whose
transformation to standard form will be derived later on.

In any case, the motion of M being conservative, it is
important to recognize from (3.8) that

E=E(09,00)=E(,0)=E(8,0); (3.13)

hence, every initial value problem is equivalent to the easier
problem in which the mass is released from rest at either of its
extreme positions as determined by this constant energy
relation. Therefore, we may use the last of (3.13) in (3.8) to
express (3.11) in the equivalent factored form

Q(0) = (b = )y + ) = 2(p/p1)* (b~ 7) (3.19)
in which the greatest extreme is =5, say, and
v =b?+ . (3.15)

Since Q(a) = 0 at the other extreme a=a < b, equation (3.14)
also yields the following equation relating the extreme shears
for all cases of interest:

(a+b)(a®+b%+ ) =2p/p:)>. (3.16)
The following additional relation follows from (3.8):
—abla® +ab+b* + j] =E. (3.17)

When the mass is released from rest at the undeformed state
of the shear springs, we may put ¢ = 0 in (3.16), which is
equivalent to using E(b,0) = 0in (3.8); and this result may be
combined with (3.12) to obtain the interesting relation

(205 —b) [40% +2bog +b? +2p]=b>. (3.18)

It thus follows that b < 2oy; that is, the extreme dynamic
shear deflection in the finite amplitude, free motion of the
mass from the undeformed rest state always is less than twice
the static shear deflection. Hence, the free motion of the mass
is asymmetric to the static equilibrium state. It is easily seen
that since i > 0, the extreme free fall deflection for every
material in the class considered here always is in the interval
43 g¢ < b < 205.

4 Motion on a Horizontal Surface
Before we address the general solution to our problem, it
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Fig. 3 Q(o) versus ¢ illustrating 'possible constant energy motions on
aninclined plane for i = 100 and og = 2
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proves convenient and instructive to begin with the simpler
special analysis of the motion of the mass on an ideal
lubricated plane surface or perhaps supported by ideal roller
bearings on a horizontal plane. We recall (2.6), and set! p=0
in (3.8), (3.11), and (3.14). As a consequence, it is seen that £
= 0, vanishing only for trivial null initial data; hence, the real
roots ¢ = =+ b, for whichv(—5b) = v(b) = 0, are given by

- N
b2=""li’ (i> E!
2 N\ 7

and the complex conjugate roots ¢ = =+ jv are obtained from
(3.15). 1t is evident that the four roots are distinct and the
motion is symmmetric about the origin ¢ = a5 = 0. Thus, 8
= —qa = b and with the aid of (3.14) the elliptic integral
(3.10) simplifies to

4.0

t= :i:plga | “.2)
0 V(b - o*)(y + )

This integral may be converted to a standard form by use of

the transformation

a=bcos ¢. 4.3)

It suffices to consider the integral with (oy, o) = (b,0). The
negative sign being appropriate, we obtain the result

wt=F(¢;k) (4.4)

in which F(¢;k) is the elliptic integral of the first kind with
modulus £ € (0,1):

b2 \/sz
k=] e = B2 4.5
v N u) @3

and, with the aid of (3.4), and (3.9), we also introduce the
amplitude-dependent circular frequency

bpy _ Ju(b2)= 24p(?)
kPN, ML

The quarter period occurs for ¢ = w/2 at ¢ = 0 in (4.4); s0
the periodic time 7 for the general motion of M on a smooth
horizontal surface is given by

7= iK(k)
w

w=w(b))=

4.6)

@.7)

in which K(k) = F(=/2; k) denotes the complete elliptic
integral. It follows from (4.3), (4.4), and (4.7) that the
periodic motion may be written explicitly in terms of the
Jacobi elliptic function cn u whose period is 4K (k) :

a(t)=bcn(wt) =bcn(4Kt/ 7). 4.8)

As mentioned earlier in regard to (3.13), the result (4.8)
may be considred as the general solution for arbitrary initial
data from which the value of the amplitude b for the present
case is determined by (4.1). Nevertheless, if one chooses to
consider the integral (4.2) for arbitrary initial data, it is now
easy to confirm that the solution is

wl=x[F(¢o;k) —F(¢p;k)] 4.9
with ¢9 = ¢(0) given by (4.3). Hence, the motion may be
expressed by

a(t)=xbcn(wtxuy) (4.10)

in which the phase uy = F(¢y;k) = cn~'(ag/b). Of course,
at ¢9 = 0, F(0;k) = 0 and we recover (4.8) when the ap-
propriate positive sign is fixed in (4.10).

It also may be of interest to note that the solution for initial
data (09, d9) = (0, vg) is related to the result (4.4) by the
simple formula

TThe special case p = 0 is a well-known nonlinear vibrations problem
described by Stoker [7], for example. He studies small-amplitude nonlinear
oscillations for both hard and soft springs. The present finite amplitude
vibrations study is similar, but it admits only the hard spring case for which p;
> 0.
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F(y;k) +F(d3k) =K (k), 4.11)

in which cot ¥ cot ¢ = (1 —k2)!/2. In this case, the travel time
from gy = 0 is determined by (4.4) with ¢ replaced by ¢. In
fact, equation (4.11) merely reflects the physical condition
that the sum of the times for M to reach the same shear state
from the states o, = 0 and oy, = b in the same motion is equal
to the quarter period given by (4.7).

5 General Solution for the Motion on an Inclined
Surface

Let us now turn to the problem of the motion of the shear
spring supported mass which is also constrained either to slide
freely or to move on roller bearings on an inclined plane
surface. No evident simplification is achieved by con-
sideration of the simplest special case when the mass is
released from rest at the undeformed state of the shear springs
except for the result embodied in (3.18), so we will investigate
the general solution for arbitrary initial data.

The integral of interest is obtained by substitution of (3.11)

into(s.lot);iiSU do
0 V(b—0)(6—a) (e—y1 o—72)

P
in which ¢ = @ < b = @ for all cases described graphically in
Fig. 3 and, bearing in mind (3.17), we find the conjugate
complex roots in (5.1) are determined by

. atb 1
N=N=-— «,5(11 +0%)+

In view of (3.13), it suffices to consider only the case for
which (oy, ) = (a, 0) is assigned initially. The greatest
extreme is then found from (3.16); and the complex roots are
given by (5.2). Greenhill [8, Section 73] has shown that the

é.1)

5.2)

relation
cos = (b—0) H(a) — (6—a) H(b) 5.3)
(b—o) H(a) + (o—a) H(D)
transforms (5.1) to the canonical form
F(d:k
t= #_ (5.9)
piVH{a) H(b)
in which the positive sign is chosen and, by definition,
H(o)=Vo*—(y; +712)o+v1v, and
— 12 _ _ 2
io [[=aP—H(}) ~H @] 5.5

4H(a) H(D)

The half-period of the motion occurs when ¢ = b at ¢ =m
with F(m;k) = 2K(k), equation (5.4) gives the periodic time
for the general case:

4K (k) _ 4K (k) 5.6
pNH@ H(b)  wab)’ :

in which w(a,b) denotes the circular frequency. A straight-

forward calculation using (5.3) and (5.4) shows that the

solution in terms of Jacobi elliptic functions is given explicitly

by

" aH (b) +bH(a) tn*(wt/2) dn*(wt/2)

0 — .
H(b) +H(a) tn*(wt/2) dn*(wt/2)

It is seen that the quarter period at ¢ = #/2 occurs at the
shear

()

. aH(b)+bH(a)

= i 2 5.8

7T TH(a) +H(b) G5

and it can be shown that ¢* = 0 for all cases, equality being
valid only when ¢ = —b in the motion on a horizontal sur-

face. The shear at the midpoint between extreme shears is g,
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= 1/2(a+b), and the corresponding angle in (5.3) is given by
H(a) —H(b)
H(a) +H(b) '

Since H(a) = H(b) > 0, ¢,, = /2, equality being valid
only for the special case ¢ = —b. Moreover, it can be seen
that

COS ¢y = (5.9

0*=o,,,+%(b—a) cos &,y (5.10)
Since cos ¢,, < 1 and b > g, it follows that ¢* < O3 CON-
sequently, the quarter period occurs always prior to the
midpoint of the oscillation.

For arbitrary initial data, we may use (3.13) to determine
the extreme a to be used in the foregoing modified initial value
problem. But if one prefers to express the results in terms of
the actual initial instant values, it is now easy to confirm that
the general solution is given by

1 . .
1=+ ————— [F($;k) —F(¢g;K)] (5.11)

pNH(a) H(b)

in which ¢, = $(ap) is given by (5.3) and the sign is chosen as
usual.

6 Closure

It has been assumed that the shear spring mountings are
able to execute a pure, homogeneous, simple shear defor-
mation; but it is plain, of course, that both shearing and
bending occur when suitable restraining tractions are not
applied to the spring surfaces, a situation commonly en-
countered in practice. Hence, both effects contribute to the
total apparent shear displacement. To account for this
variation from simple shear, Rivlin and Saunders [9] used a
simple engineering analysis in which familiar linear force-
displacement expressions for both the bending and shearing
displacements were superimposed to obtain a net apparent
simple shear stress 7, = p,0 to replace (2.1). Their ex-
perimental results for incompressible materials for which £ =
3uo share very good agreement with the apparent shear
modulus p, defined by

Ho
Ha = ¥ po L2 /(12ErY) 6.1
wherein E denotes Young’s extensional modulus and r is the
usual cross-sectional radius of gyration about the normal line
to the neutral axis of bending. The formula (6.1) may be used
for both compressible and incompressible materials.

The linear shear displacement relation is consistent with the
arbitrary ideal simple shear displacement possible for the
Mooney-Rivlin material considered in [9]. Therefore, if the
deformation is not so large nor the shear block so short as to
render the linear bending assumption invalid, the
aforementioned results suggest, more generally, that to
estimate the effect of bending, the true shear modulus u, of
the Mooney-Rivlin or Hadamard materials be replaced in our
equations by the apparent shear modulus (6.1). Nevertheless,
the universal relation (3.6) valid for every Mooney-Rivlin and
Hadamard material is unchanged, except that now the ap-
parent amount of equilibrium shear o5 = (Mg sin 0)/2A4u,
depends on the apparent shear modulus. Of course, in this
case the apparent circular frequency of vibration of the load
may now be written as

Po

= T+ wol? /(2P ©2
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where py in (2.6), is the corresponding frequency for the ideal
simple shear case. Consequently, it appears from (6.2) that if
small bending is taken into account, it may be estimated that
the apparent circular frequency will be somewhat smaller than
the frequency found for the ideal simple shear spring
suspension model studied here.

- Of course, other effects due to temperature and damping,
for example, also are present. The Gough-Joule thermal
effect in which the material modulus of rubber materials
increases with the absolute temperature may be important in
some cases. The shear deflection of a rubber, vehicle, or
missle suspension system, for example, may increase as the
ambient temperature falls [10]. And there may be small ef-
fects due to heat working in the vibration. Fletcher and Gent
{11] found that measured values of the dynamic modulus in
shear decreased with increasing amplitude of the shear in a
forced vibration, whereas our nonlinear model (3.1) with
special form (3.4), in a simple shear shows that the elastic
shear response function (3.4), is an increasing quadratic
function of the amount of shear. It is quite conceivable,
however, that the small decrease observed by Fletcher and
Gent [11] is due to some kind of molecular link structural
breakdown or chain untangling that results at higher
deformations possibly experienced in their larger amplitude
measurements. This phenomenon has been called the
prestretch effect by Mullins [12], who has studied this effect
for various kinds of rubber materials. In general, most shear
tests seem to show that the apparent modulus does not differ
appreciably from the true modulus for most shear suspension
designs, although deviations often are noticeable at
moderately large amounts of shear. So perhaps these ad-
ditional effects may be considered negligible to the extent that
our simple shear model may serve as an adequate first ap-
proximation that also admits finite amplitude motions of
most rubberlike simple shear suspension systems.
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Endochronic Theory of Cyclic

K. C. Valanis

Plasticity With Applications

Integral constitutive equations of the endochronic type with only two easily
determined material constants are shown to predict with computational ease the

C.F. Lee

stress (plastic strain) response of normalized mild steel and Grade 60 steel to a

variety of general strain (stress) histories, without a need for special unloading-

College of Engineering,
University of Cincinnati,
Cincinnati, Ohio 45221

reloading or memory rules. These equations are derived from the endochronic
theory of plasticity of isotropic materials with an intrinsic time scale defined in the
plastic strain space. Close agreement between theoretical predictions and ex-

periments is obtained in the case of normalized mild steel in a variety of uniaxial,
constant, strain-amplitude histories, variable strain-amplitude histories, and cyclic
relaxation. Similar results are shown in the case of Grade 60 steel subjected to a
random uniaxial strain history.

Introduction

In recent years, cyclic plasticity, which deals with the rate-
independent inelastic response of materials (metals) to cyclic
stress or strain histories, has become an important subject of
research in applied mechanics and engineering design. Past
experimental work, theoretical studies, and engineering
analysis are well documented in the literature. For details see,
typically, references [1-17].

On the basis of existing experimental results, one concludes
that generally, when subjected to symmetric stress or strain
cycles, annealed or soft materials will harden and will tend to
a stable response, while cold-worked or hard materials will
soften. When a stable response is reached, hysteresis loops in
the stress-strain space become stable, closed, and symmetric.
This has led to the definition of a cyclic stress-strain curve
which is the locus of the tips of stable hysteresis loops. It is
found that some metals, e.g., 7075-T6 aluminum, follow the
Masing rule. However, other metals, e.g., steels, do not
follow this rule at all [8].

Also, in the presence of a history of unsymmetric stress
cycles, the material response involves a progressive increase of
plastic strain, the direction of which is determined by the
algebraic sign of the mean stress. This phenomemon is called
cyclic ‘“‘ratcheting.”” On the other hand, a history of sym-
metric cyclic straining relative to a nonzero mean strain will
result in “‘cyclic relaxation’’ toward zero mean stress. Both
phenomena occur whether or not the material response has
been stabilized prior to these specific tests [6].

Under variable amplitude cycling, metals have a strong
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memory of their most recent point of load reversal. As the
number of cycles increases, effects of prior plastic history
tend to disappear. More precisely a material has a ‘‘fading”’
memory, in terms of the intrinsic time scale ¢, of the history of
plastic deformation that preceded the cyclic history {7], as the
latter progresses.

In this paper, we use a recent form of the endochronic
theory to study cyclic plasticity of stable materials. This form,
proposed by Valanis [13], has been applied to metals by the
authors [15]. In the case of normalized mild steel, it was
shown that the constitutive equations can predict with ac-
curacy stable hysteresis loops pertaining to cyclic strain
histories at constant amplitudes. In this paper the broader
capability of the theory is critically tested in a number of cases
by demonstrated agreement with the observed cyclic response
(9) of normalized mild steel to variable uniaxial strain am-
plitude histories, and (i7) of Grade 60 steel to a random strain
history.

1 Brief Review of the Endochronic Theory

In previous papers endochronic constitutive relations were
derived for the isotropic plastic response of metals at room
temperature, which exhibit yielding immediately upon loading
[13-15]. The set of these equations is given in the following,
where as indicated, the intrinsic time measure is in terms of
the increment of the plastic strain tensor.

z de?
= —_— Yy —— 4 = 1.1
s=2 p(z-29) 5 - dz', pO=e (.1
z del
akk=3SO K(Z—z')a—zk’jdz', x(0) = oo (1.2)
and
rz z
SOK(Z’)a'Z'<oo; SO p(Z)dZ' <o,  (1.3a,b)

for all finite Z where e is the deviatoric strain tensor, s the
deviatoric stress tensor, €, and gy, the hydrostatic strain and
stress, respectively, and
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ds

de’ =de — —— (1.4)
2m
. do
dee =dey— — ka (1.5)

where u; and K, are the appropriate elastic moduli. The
intrinsic time scale increment dZ is related to the ‘“‘intrinsic
time measure’’ d{ by the equation:
=d{/f (%) 1.6)

where
di* =k defidel + kydefdef a.7

A class of thermodynamically admissible functions for the
kernels p(Z) and x(Z) is given in the following.

ERe

n=1

p(Z)=

M
Z, K(Z)=—5 Y pae™” (1.8,9)
n=1

Zu
where all the constants are positive and finite, M, and N may
be finite or infinite, and « and w are bounded by the
inequalities

0<(a,w) <1 (1.10)

See Appendix A4 for detailed discussion.

In consequence of the weak singularity of the kernels two
essential results are accomplished: (1) The slope of the
deviatoric (or hydrostatic) stress-stain curve at points of
unloading and reloading (or strain rate reversal) is always
elastic, i.e., equal to the slope of the appropriate stress-strain
curve at the origin. (2) The hysteresis loops in the first
quadrant of the stress-strain space are always closed. For
details see reference [13, 14].

Constitutive Relations in ‘‘Tension-Torsion.”” The
constitutive equations that apply in this specific case! are
found from equations (1.1) and (1.2) and are given in the
following:

np 7’
S P(Z=2') 5o dZ (1.11)
01—2S o(Z-2 )az' (ef —e8)dZ’ (1.12)
al_3S K(Z— Z)aZ, (e +2e8)dZ’ (1.13)

where ¢f and g, are axial plastic strain and stress, respectively,
g, = 03 = 0, and 6§ = € to satisfy the condition of isotropy.
Also 7 and »” stand for s, and ef,, respectively, in the
notation of equation (1.1).

Because in the experiments to be investigated the
hydrostatic strain was not measured we will proceed to make
the usual (approximate) assumption of elastic hydrostatic
response, in which case equations (1.2) and (1.13) do not
apply, but instead the plastic incompressibility condition

& +2e2 =0 (1.14)

is used.

In light of the foregoing hypotheses and in view of
equations (1.11) and (1.12) the appropriate constitutive
equations in tension-torsion are the following:

np

T = S PZ-2") 5 dZ’ (1.15q)
_ ok .,
o = S E(Z-Z')—_—dZ (1.15b)

U'What is meant here is a uniaxial state of stress in the presence of torsion.
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6 + 2= 30_1<1, (1.15¢)
where
E(Z)=3p(Z) (1.16)
ag

dZ= 1.17
7 @17

and as a result of equation (1.7)

2 172

d¢= [5 (de? —deg)? +2(dn”)2] (1.18qa)

= 1, Alternatively, d{ can be expressed
= 29", in which

where we have set k|
in terms of the engineering shear strain v
case, upon using equation (1.14):

3 1 172
de=| 2 @)+ 5 (@v)?)

Here ¢ = €.

In the applications that follow we will use the preceding
equations in the study of cyclic response to a variety of strain
histories.

(1.18b)

2 Application to the Cyclic Response of Steels

Uniaxial Cyclic Response. In this section we will treat a

class of metals where
Po

p(2) = 22 @.10)
JH =1 (2.10)

It follows from equations (1.17) and (1.185) that
=v3/2lde? | 2.2)

We will demonstrate in Sections 2.1 and 2.2 that equation
(2.1) are true of the post-cyclic behavior of normalized mild
steel> and Grade 60 steel, both of which will be the items of
investigation in Sections 2.1 and 2.2. In view of equation
(1.16)

E(Z)=EyZ™*, E;=3pg 2.3)

We remark that, in view of equations (2.1a, b) the stress
response is completely defined in terms of fwo material
constants py and a. We also point out that equation (2.3) gives
rise to the Ramberg-Osgood equation for the monotonic
tensile response of a number of metals. A method of deter-
mining the functions p(Z) and f(?), is discussed in Appendix
B.

Upon substitution of equation (2.3) in equation (1.155),
one finds

dz’

VA
S E, de? @.4)

“Jo (Z=2") dz’
Following the completion of n reversals i.e., when Z = Z,, the

following relation is obtained by virtue of equations (2.2) and
2.4)

n Zi
= —1yi-14/ ’
Z:ISZI—I D 2/3 (Z-2Z')" Z) az
+(—1)n§Z \/2/3Ldz' 2.5)
z (Z-2Z") ’

where Z; denotes the value of Z at the point of initiation of the
ithreversal and Z, ¢f 0. Upon integration, the preceding
equation leads to the result

x/ﬁ [ZI a+2E( )(Z-Z)'- H]

i=1

(2.6)

2What is meant here is the response to arbitrary axial histories following a
steady cyclic axial response.
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Equation (2.6) is sufficient for the prediction of the stress
response, since the functional relationship between Z and the
(plastic) uniaxial strain hlstory is known, in view of equation
2.2).

Cyclic Shear Response. In this case, we use equatlons
(1.17) and (1.18b) to obtain the relation

dZ=d{= ldvy* | /N2 @2.7

which is the shear counterpart of equation (2.2). In the
fashion outlined in the foregoing, the cyclic shear response is
found from equation (1.15a), (2.1a), and (2.7) and is given by
the equation

‘/_Po

= 2.8)

[Z‘ ﬂ+22(—1)l(z Z)'- a]
We remark that equations (2.6) and (2.8) obey the linear
homogeneous transformation between indicated stresses and
strains given in the following:

=0/V3, v*=V3e" (2.9 and 2.10)

We also note that the foregoing relations hold for all forms of
kernel function p(Z) and material function f({) upon use of
equations (1.15a, b), (1.16), (1.17), and (1.185).

We apply the theory to experimental results on normalized
mild steel obtained by Jhansale and Topper [6] and Grade 60
steel obtained by Dafalias and Popov [10].

2.1 Application to Normalized Mild Steel.

Constant Uniaxial Strain Amplitude. We consider the
class of metals whose asymptotic stress response to sustained
cyclic strain excitation at constant strain amplitude is a
periodic stress history with constant amplitude. Specifically in
a uniaxial test of this type, the axial plastic strain amplitude
Ae” is also constant, following equation (1.4). Thus

Acg

1
where Ae is the axial strain amplitude and E, is Young’s
modulus. As a result, the value of Z at a point during cyclic
tension and compression can be found from equation (2.2).

Specifically, the value of Z such that Z, = Z = Z,,,,,
where Z, is Z at the nth reversal is given by equation (2.12),
where

AP = Ae—

(2.11)

Z = ~N3/2(2nAé” £6°} (2.12a)
In particular
Z, = ~N3/2(2n-1)Aé (2.12b)

where in equation (2.12a) minus is used for # odd and plus for
n even. Thus using equations (2.124, b) and substituting for Z
in equation (2.6) we obtain a closed-form solution for the
stress response given in the following:

o(e?) = (2/3)(*/2 (Ae”)‘ F, (0,X) (2.13)
X = e/A¢ (2.14a)
Fy(oaX) = Q@nax)'"*+2),(=1)(2n—2i+1+x)!-=

i=1

(2.14b)
where the plus or minus signs depend on whether 7 is even or
odd. The algebraic value of the peak stress (i.e., stress am-

plitude for any n) is found from equation (2.14b) by setting x
= ] for nodd or x = — 1 for n even in equation (2.144), i.e.,

F,,(a)=(2n—1)1“’+2E(—1)"(2n—21 I-a (2.14¢)

i=1
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Fig.1 Steady hysteresis loops of normalized mild steel

It can be shown that, in the limit of n— oo, F, converges to a
constant F,,{(«) where F,, varies with « but is essentially close
to unity. For instance, for a = 0.864, F, is equal to 1.03 [15].
Thus the asymptotic value of Ao as n tends to infinity is given
by the equation

Ao= (2/3)(*/2 (Ae”)l “F_(c) (2.15)
This is the equation of the cyclic stress-(plastic) strain curve,
when the constitutive relation is given by equation (2.4).
Cyclic response in shear can be found in a similar fashion or
by using equations (2.9) and (2.10).

At this point we test the theory vis-a-vis experimental data
on normalized mild steel [6]. In reference [6], a set of stable
uniaxial hysteresis loops corresponding to various constant
strain amplitudes was presented in the uniaxial stress-strain
space. A propos of the ensuing theoretical predictions we note
that the geometric shape of the loops is given by equation
(2.13), whereas the peak stresses are given by equation (2.15).
We also note that there are only two undetermined parameters
in these equations, « and Ejy. The form of equation (2.15) was
corroborated in reference [15] where a plot of the ex-
perimental values of Ao versus log Ae? gave rise to a straight
line. The plot also determined « and E; which were found to
be 0.864 (a pure number) and 107.6 MPa (15.61 ksi),
respectively. These values were then used in equation (2.13),
and the shape of the stable hysteresis loops was thereby
obtained for large n (say > 25). Agreement between theory
and experiment is shown in Fig. 1.

We wish to devote a few lines to these results. The reader
will note that fwo constants are sufficient to determine the
cyclic stress-(plastic) strain response as well as the hysteretic
behavior of normalized mild steel. It is also pertinent to
mention that the analytical expressions involved (equations
(2.13) and (2.15)) are closed-form solutions derived from a
general constitutive equation pertaining to three-dimensional
histories. Also of importance is that the prediction of
unloading and reloading behavior did not necessitate special
memory or loading-unloading rules but was dealt with
routinely, as part of the total experimental history of interest.
Specifically, the celebrated Bauschinger effect is predicted
quantitatively and correctly from one and the same con-
stitutive equation.

We make, in passing, an observation of historical interest.
Equation (2.15) agrees with the empirical relationship
proposed by Landgraf et al. [2] for steels, i.e.,

Ag~(AeP)!1e

JUNE 1984, Vol. 511369

Downloaded 02 May 2010 to 171.66.16.25. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



400
1

— —— Theoretical Cyclic 0 ~ € Curve

= wmmmes Theory
AExperiment
2

300

€

200
T

Steady
Response

100
T

©
% Of—
SR
[=)
3
(=}
gl
N
‘._
Q
Ot
[
]
ol ===="" 1.3
Sl o) [ N SR T )
'""727-70 08 -08 -04 -02 O 02 04 o0 08 10
€%
Fig. 2 Uniaxial stress response of normalized mild steel under

variable strain amplitudes

100 f=

oMPa
°
8
b
>
»
B
.
i
»
g
o
8
-
(=3
b
5

=100 =

-200F gP

-300 F

—a00

Fig. 3 Uniaxial cyclic relaxation of normalized mild steel

where 1—« ranges from 0.12-0.17. In our case, | —a =
0.136.

Variable Uniaxial Strain Amplitudes. To extend the
experimentally verified domain of validity of the theory, we
test it under conditions of variable uniaxial strain-amplitude
histories. The stress response to such histories is found by
using equations (2.13) and (2.14a, b). The analytical results
are compared with the experimental data on normalized mild
steel [6]. The experiment consists of a constant uniaxial strain-
amplitude cyclic test (until stable hysteresis loops are reached)
followed by a variable uniaxial strain-amplitude test. The
experimental data are shown in Fig. 2. Despite the complexity
of the history, close agreement between theory and ex-
periment is obtained and shown in Fig. 2. Again the theory
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predicts the stress history routinely without the use of special
rules discussed elsewhere [3, 5, 6, 10-12]. At this point, we
may reasonably conclude that the theory as expressed by
equation (2.6) (or equation (2.13)) is suitable for the
prediction of the stress response to uniaxial cyclic straining, in
the case of normalized mild steel.

Cyclic Relaxation. Here we address the case where the
uniaxial plastic strain is increased monotonically to a value ¢,
and is followed by a cyclic uniaxial strain history with am-
plitude Ae? about a mean value €f.

To calculate the stress response to this specific class of
histories we use equation (2.6). The cyclic strain history is
shown in Fig. 3. With reference to Fig. 3, we make the
following definitions.

€= ef + Ae? (2.16a)
@ =ef — AeP (2.16b)

The value Z; of Z at the jth reversal, is found from equation
(2.2). Thus

Z;=\3/20ef + i~ DALY, i=1,2, ... n. 2.7

After n reversals have been completed, the value of Z at the
current strain €’ is

Z=~N3/2[2nAe® + f F &P (2.18)
where
&= —€f (2.19)

and the minus and plus signs correspond to n odd and even,
respectively. The stress response, after n reversals is found
upon using equations (2.6), (2.17), and (2.18). Specifically,

E
o=(2/3)*"? 1—" (AeP)' ~*F, (01,xp,%) (2.20)
-
where
Fo(o,Xg,x) = Qu+xoFx)' ™
+2Y (- 1)2n-2i+1Fx)! " (2.21)
i=1
and
Xo = ef/Ae” (2.22a)
x = /A (2.22b)

If n = odd, then x varies from 1 to —1; while if n = even,
then x varies from —1 to 1. Equations (2.21) and (2.14b)
differ only in the first term on their right-hand side. It is x;
which allows cyclic relaxation to take place even though the
material is stable since f({) = 1. The results are shown in Fig. 3
where the material constants, found previously, were used.
We notice that as n becomes very large, the effect of x,
in equation (2.21) disappears as a result of the relation
Lim F, (e, Xy, X) = F, (o, x). The hysteresis loops

then become stable and symmetric with respect to ¢§ and of
exactly the same form as those with zero mean uniaxial strain,
see Fig. 3.

Other Complex Histories. A strain history of practical
importance is shown in Figs. 4(a) and 4(b), where a cyclic
strain history at a fixed strain amplitude is followed by
another at a lower strain amplitude. The experimental results
are shown in Figs. 4(¢) and 4(b). To predict the stress
response, we use the numerical scheme developed in the
section on variable uniaxial strain amplitudes. The theoretical
results obtained are also shown in Figs. 4(a) and 4(b). Again
close agreement between theory and experiment is demon-

 strated.

It is important to observe that the decreasing effect of the
previous history on the stress response to a periodic strain

Transactions of the ASME

Downloaded 02 May 2010 to 171.66.16.25. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



— —— Theoretical Cyclic 0 ", € Curve

e Theory

DATA

4173 Initial Costant Amplitude Sequence

£:36 Transition Histo

61012 Reduced Constant Amphitude Sequence
0

400

oMPa
—200 100 0 100 200 300
T T T T T T

-300

~400

-07 0'6 fols 70'.4 70‘3 /Dl.Z l;i ] 1 0.2 05 04 0.5 06 07 08 09 10
&%

Fig. 4(@) Uniaxial stress response of normalized mild steel under

complex histories

400

- —— — Theoretical Cyclic 0' € Curve
e Theory

DATA 24
413 Initial Costant Amplilude Sequence
2376 Transition Histor

©10~12 Reduced Constant Amplitude Sequence 2

300

= "

200
T

oMPa
- 200 —100 0 100
T T

-300

300

1 1 | 1 1 1 1
-06 —05 —04 ~03 -02 -01 0 01 02 03 04 05

€%

Fig. 4(b) Uniaxial stress response of normalized mild steel under
complex histories

i J
06 07

100 200 300 400\ 500 600

[}

oMPa

500 400 -300 200 - 100

£9%
Fig. 5 Stress response of Grade 60 steel under random uniaxial cyclic
strain history

history (cyclic test at constant strain amplitude) is the natural
consequence of the monotonically decaying kernel function
used in the present theory, i.e., in equations (2.14). This type
of kernel does indeed impart to the material a fading memory
with respect to the endochronic time scale.

2.2 Application to Grade 60 Steel. In Fig. 5 a specimen
of Grade 60 steel was tested by using random uniaxial cyclic
strain history. Due to lack of information regarding the
method of preparation of specimen (i.e., its prehistory) and
its hysteresis loop geometry at constant strain amplitude, it is

Journal of Applied Mechanics

difficult to obtain the form of kernel function p(Z) and of the
material function f( ) using only the data in Fig. 5. However,
with the exception of the stress response during the first
quarter cycle, we can still predict the experimental data of the
subsequent history by using the present theory with only two
material parameters £, and c.

In the following, we used equation (2.6). The material
parameters £, and « are determined by using the procedure in
Appendix B. We find E;, = 264.2 MPa and o = 0.82. En-
suing agreement between theory and experiment is shown in
Figure 5. It is worthy of note that predicted values of the slope
of the stress-strain curve at the onset of unloading and
reloading are always equal to Young’s modulus (2.06 x 10°
MPa). However, in reference [10] those slopes were assignd a
smaller value (1.68 x 10° MPa) than the Young’s modulus to
account for ‘‘softening.”’ This has not been necessary in the
present case.

3 Conclusions

On the basis of the results presented in this paper, we
conclude that the integral constitutive equations of the en-
dochronic type are suitable for the analytical prediction of
cyclic response of steels under a variety of conditions. These
equations are derived from the endochronic theory of
plasticity of isotropic materials with an intrinsic time scale
defined in the plastic strain space.

Also noteworthy is the fact that a constitutive equation with
two material constants, which are easily determined, can
predict accurately and with computational ease the stress
(strain) response of a material to a variety of general strain
(stress) histories, without a need for special memory rules
often discussed in the literature. The cyclic ratcheting
phenomenon is also predicted by the present theory in routine
fashion [18].
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APPENDIX A

The theory of course continues to have its foundation in
irreversible thermodynamics. If the internal variables are
discrete then both p(Z) and «(Z) are given by sums of
positive decaying exponential terms, i.e.,

n n
0(Z)= Y, Re~*Z,(Z) = ), Ke 7 (A.1a,b)
r=1 r=1

with particular reference to p(Z) — the same arguments apply
to k(Z) — the number of internal variables must be infinite to
satisfy equation (1.3a4,b). Thus

p(Z)= ) Re (4.2)
r=1
such that
p(0)=0;0(Z) <00, 0<Z <00,

In reference [13] we gave one example to demonstrate the
argument, by setting

R,=%,o¢,=aor (A.3)
Evidently
0(0)=R, fl S=o (A4.4)
=
since this is a divergent series, whereas
p(Z)=R, f; %e""rz, Z>0 (A.5)

r=1

We note that since the following series is convergent as shown

= 1
Zle.»a,z:_e_cq)_z_:_1 (4.6)

the series on the right-hand side of equation (A.5) is also
convergent since every one of its terms is smaller than or equal
to the corresponding term of the series on the left-hand side of
equation (4.6).

In the case where the internal variables are distributed then

p(Z)=S0R(r)e"Zdr (A7)

where R(r) is the distribution function appropriate to the
kernel p(Z).

Specifically, in the case of steel (mild steel as well as Grade
60) it was found that

Po
A8
o (A.8)

Since the right-hand side of equation (A4.7) is the Laplace
transform of R(r), it follows that

p(Z)=
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EP

Fig. B.1 Schematic stress-plastic strain curve used to determine
material functions

P
T(ayr! =

where I is the Gamma function.
In the case of brass, on the other hand, it was found that

R(r)= A.9)

p(Z) =22 -z (A.10)
7z
in which case
O,r<k
R(r)= (A.11)
Po

T(a)(r—k) ==
In greater generality consistent with the theory of linear

irreversible thermodynamics as it applies to isotropic
materials,
oo &
p(Z)=-L2 Y R,e*nZ (4.12)
z n=1
where N is finite or infinite. In this event
N
[r—k,1a-1
R(r)= (A.13
L T )
where
[r—k,]=0,r<k, (A.14)

APPENDIX B

Here we give a rigorous method for determining the
material functions p(Z) and f({) from experimental
measurement when f(¢) is a slowly varying function in a sense
to be defined later in this appendix. However we should not
expect a ‘“‘unique’’ set of experiments for the determination of
these functions. In viscoelasticity such a set does not exist.
The relaxation function in shear may be determined by a
relaxation test, creep test (indirectly), constant strain rate test,
or an oscillatory test, and everyone of these has advantages
and disadvantages. We expect that a similar situation will
exist in endochronic plasticity. This is a subject that requires
further investigation and will not be dealt with in this paper.

Consider the uniaxial test with a loading-unloading history.
The test is illustrated schematically in Fig. B.1 where the axial
stress is plotted versus the plastic strain e”. The stress o is
given by the relation

aé?

dz’
az’

VA
o= SOE(Z—Z ) (B.1)

where

E(Z)=3p(Z) (B.2)
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dt=~3/21de? | (B.3)
a§
dZ = B.
S &9

We wish to calculate the stress at points B and C where Ae?
is an increment, not necessarily infinitesimal, in the plastic
strain. Then in view of equations (B.1), (B.3), and (B.4),

VA
op = 2/3SOB E(Zs—2Z')™(2")dZ'’ (B.5)
where Z is the value of Z at point B and
S (Z) =12 (B.6)

The stress ¢ at C is calculated using again equations (B.1),
(B.3), and (B.4). Thus
Zc de®
= E(Zo-2")-—dZ’
oc S o (Z¢ ) az’
With reference to Fig. B.1, we now use the relation Z, = Zp
+ AZjp to write the right hand side of equation (B.7) in the
form

B.7)

ZB dée?
gc = SO E(ZB'{"AZB"—ZI)’d?dZ/
SZB""AZBE 7 de?
+ 7 7 .
2g (Zp+AZy Z)dz, dz' (B.7q)

In view of equation (B.3) we note that in the interval 0 < Z’
< Zy (loading), de?/d¢’ = + ~/2/3, whereas in the interval
Zp < Z' = Z (unloading), de?/d¢’ = — ~2/3. It follows
therefore that

Z
oc = «/2/3S0 E(Zp + AZy — ZHZ)dZ

Zgt+AZg
- 2/35 E(Zp+AZy—ZWZ")dZ’ . (B.8)

Zp

Addressing the second term on the right hand side of equation
(B.8) we note that in view of the mean value theorem it
follows that

Zp+AzZp _
V2/3Sz E(Zg+AZy—Z"Y*(Z")dZ’
B
=/*(Zp)R(AZp) (B.9)
where the function R (Z) is defined by the integral
.z
R(2)=N273| E(z')dz’ (B.10)

and ZB = ZB = Zc.
To evaluate the first term on the right-hand side of equation
(B.8) we note that

;] Zp+azZp
SO E(ZB+AZB~—Z’)f‘*(Z’)dZ’=SO E(Zy+AZy
Zp+AZg
—ZY(Z)dZ’ —SZ E(Zp+AZ,
B
—ZMZYdZ (B.11)
or
z
\/2/350 E(Zy+AZp—ZWNZ")dZ" = op0
—f"(Zp)R(AZp) (B.12)

Where the physical meaning of o3, is illustrated in Fig. B.1. In

view of equations (B.8), (B.9), and (B.12)
ge=0p" —2f"(Z5)R(AZp). - (B.13)

Hence:
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We remark that this is an exact result irrespective of the

magnitude of AZp. A generalization of equation (B.14)

applicable to any reversal point is given in the following
without proof, which we leave to the reader,

(B.14)

|0'B’ —O'cl
2R(AZp)

where B is any reversal point and the geometric meaning of
B’, C, and Bis as that given in Fig. B.1.

We wish to use equation (B.14aq) for the experimental
determination of f*(Zg). If we let AZy be infinitesimal and if
Sf*(Z) is a slowly varying function (see the following
discussion) then

f(Zp) = (B.14a)

S'(Zp) =f*(Zp) (B.15)
R(AZg)=R(N3/21A® I/f*(Zg)) (B.16)
op’ =0p (B.17)

so that equation (B.144) becomes
P (Zs) = log ~ oc| (B.18)

2R(NV32 1AL 1 /1" (Z5))

Furthermore since f*(Zg) = f({z), equation (B.18) deter-
mines the value of the function f(¢) at the point B, i.e., at { =
tg. The error associated with these approximations will be
discussed in the following.

Discussion of Solution of equation (B.18)

To solve for f*(Zp) it is necessary to know the functional
formof R(Z).

We discuss the solution of equation (B.18) in the case where
in the vicinity of Z = 0 the material function E(Z) is given by
the relation

E(Z)y=E,/Z~ (B.19)
which is essential for the weakly singular form of E(Z). In
this event following equation (B.10) and in the vicinity of Z =
0,

V2/3E, 71—«
l-o

In view of equation (B.20), equation (B.18) may be solved

explicitly for f*(Zg) to give

R(Z) = (B.20)

) B _ |OB*UC| 1/a
f8=*(Zg) =f(%s) —{m}

More explicitly, using equation (B.20)

(B.21)
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IUB bt UC I
Ti= 2V2/3E, (B:22)
(——1———"-) W3/2A¢8 {1~
.

The logarithmic form of the preceding equation given in the ‘

following

12E0 YTs o:) +(1 - a)log 1ae?|
-

log loy —op =log(
(B.23)

is useful in determining both the parameter « and the function
fat { = ¢ within a multiplicative constant. In effect, a plot
of log log — ool versus log 1Ae” | gives a straight line with
slope (1 — ) and intercept log { [2E/(1 - o)lff (V2/3)*}  at
lAe?! = 1. Such a plot is shown in Fig. B.2 for various
reversal points in the case of Grade 60 steel. The experimental
data are shown in'Fig. 5. We found a great deal of scatter for
1Ae”| <7 x 10-*, However, intherange 7 x 1074 < lAe”|
< 10~? the experimental points are consistent and lie close to
a straight line with a slope 8 = 0.18 as shown. The fact that
all points lie virtually on the same line indicates that fis a
constant (set it equal to 1) in the range of Z covered by the
experiment.

Error Associated With equation (B.18)

Here we give an estimate of the error associated with
equation (B.18) when R(Z2) is given by equation (B.20). The
calculation is lengthy but straightforward. Bascially we use
the relation

3741 Vol. 51, JUNE 1984

SZ)=f5+F5(Z' ~Zp) +0(Z" — Z3)?) (B.24)
intherange Z; < Z° = Zg + AZj, in equation (B.9) where
fr= df(Z)/dZ ‘z:zB , and the integral form of equation
(B.4), whereby

z
t= Sof*(Z')dZ’ (B.25)

The resulting relation for the error eis

log—o¢l

1 = .
S el = R B 2T 178 (8.26)
where
_ A 2
=Méf§+o<—@) (B.27)
2Q-a) fB JE

The term in the bracket on the right-hand side of equation
(B.27) varies from zero to unity as o takes values in the range
0 < o < 1. Thus eis at most of O(Af}/13).

Determination of the function F(2)

The form of the function E(Z) given by equation (B.19)
applies strictly in the vicinity of Z = 0, in general. However in
the case of two metals discussed in this paper this form has
been found to hold in the entire range of the experimental
investigation. In other cases it may be determined by solving
the Volterra integral equation (B.5). This method will not be
pursued here but will be the subject of investigation in a
future papper.
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Introduction

The problem of forced harmonic motions of circular beams
or rings lying or not lying on elastic foundation has already
attracted the interest of many investigators. In references
[11-[5] and [8] the classical beam theory was used to analyze
the dynamic response of a circular beam or ring, in which the
effects of shearing deformations, the flexural rotatory
inertias, and axial forces were omitted. On the other hand, in
references [6], [7], [9], and [10] the effects of the previous
quantities have been taken into consideration. But, in all these
references the harmonic vibrations were considered only on
the plane or in the perpendicular direction of the plane of the
beam; these assumptions essentially simplified the governing
equations of the problem.

The present investigation deals with the problem of three-
dimensional harmonic forced motions of a uniform circular
beam in the most general case of response. The elastic center
coincides with the shear center and the center of twist of the
beam cross section. The harmonic loads are considered to act
through this point and simultaneously in the direction of the
principal torsion-flexure axes at every cross section of the
center-line. Each differential element is given six degrees of
freedom, i.e., three translations and three rotations. So, the
motions of the beam are spatially developed. Also, the effects
of rotatory inertias, shearing deformations, and axial forces
are included in the analysis. This problem is associated with a
linear system of four coupled (3 x 1)-vectorial partial dif-
ferential equations with constant coefficients. After an ap-
propriate analytical treatment, the system is uncoupled, so
that two independent partial linear-differential equations of
sixth order with respect to the two translations are form-
ulated. An exact solution for the determination of the natural
frequencies, in the general case where the effects of rotatory
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composed of four coupled 3 X 1 vectorial equations. The influences of transverse
shear deformation and rotatory inertia are also included in the analysis. The
aforementioned solution methodology is successfully demonstrated through several

inertias, shearing deformations, and axial forces are taken
into account, is obtained. Finally, the solutions developed
herein are successfully demonstrated through several
numerical examples.

Analysis

Consider a circular beam of uniform cross section subjected
to an harmonic forced vibration, due to a continuous vec-
torial load function q(s, ) = q(s) xe'“ and a continuous

vectorial moment function m(s, ) = rfl(s) e , where s is the
arc length of the beam and ¢ the time. Consider also an
elementary arc A4’ = ds = (1/k)de, where k denotes the
constant curvature and ¢ the epicentral angle of the centroidal
axis of the beam.

Let us name 4123 the Frenet trihedron of the section 4 with
unit vectors t, m, b respectively, where t = (¢,(s), £,(s),
t3(s))T denotes the unit tangent vector pointing to the
direction of s increasing, n = (n, (s), ny(s), n5(s)) 7 is the
unit normal vector pointing to the center of curvature, and b
= (0, 0, 1)7 is the constant binormal vector; b is defined in
such a way that the corresponding Frenet trihedron to be a
right-handed system (Fig. 1). Here, it must be noticed that the
aforementioned trihedron conicides with the principal tor-
sion-flexure axes of the cross section of the beam.

The partial linear vectorial (3 X 1)-differential equations (in
terms of generalized forces and displacements) governing the
equilibrium of an arc element (Fig. 1) are given by:

T =RT-my+q (la)
M'=RM+ST-I{+m (1b)
¥'=R¥-AM (1¢)
Yy =Ry+Sy-BT (1d)

In the aforementioned equations T = (7(s, ), T,(s, ¢),
Ty(s, 1)) s M = (M (s, t), My(s, t), Ms(s, 1)) denote the
vectors of internal forces and moments, respectively, while ¢

= (\bl(s) t); \[/Z(S’ t)y 1//3(S) t))T’ y = (.yl(sy t)! y2(s9 t)y.yS(Ss
1)) T the vectors of rotations and translations. Also, q =
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Fig. 1

@105, 0, gols, B, @3(s, )75 M= (s, 1), o, 0,
my(s, t)) T are the vectors of the continuous external loading
(forces and couples); — m§ = — m(y,, ¥2, ;)T and —1 ¢ =
- (¢, LY, 1,¥;)7 denote the vectors of the D’ Alem-
bert’s forces and moments, due to the transverse and tor-
sional vibration of the beam, respectively; m is the distributed
mass per unit length. Finally, R, 8, I, A, and B are constant
(3 X 3)-matrices, given by:

R=[r;]= 0«0 S=[s;]l= [0 00 1|,
-x 00 0 01
L 600 0 -10
I=[i;l= [L0O T,A=[4,]=[a, 0 0 7,
01,0 0 a, 0
|l 001, 0 0 a
B=[B;l= [ 500
00,0
L 00 by

in which the elements i;;, A;, B; (i = 1, 2, 3) are calculated by
the relations:

a,=1/Gl;a,=1/EL;ay=1/El;; b, =1/EF;

by=1/GFy; by =1/G Fy; Fy = \,F, 3) -

F)’E),:)\:;F;Ii:(fl,' /g

376/ Vol. 51, JUNE 1984

Geometry and sign convention of forces and dispiacements

In equations (3) E and G are the Yourng’s and shear moduli of
elasticity, respectively; I,, I;, and I, represent the two
principal moments of inertia and the polar moment of inertia
of the cross section of the beam with respect to principal
torsion flexure axes 2, 3, 1, respectively; F'is the cross-section
area; e denotes the specific weight of the material of the beam,
whereas g is the gravity acceleration; M\,; A; are numerical
coefficients depending on the shape of the cross section.
Finally, primes indicate differentiations with respect to s and
dots differentiations with respect to ¢ (The superscript ‘7"’
denotes the transpose of a matrix). It should be noticed here
that through a simple manipulation of equations (1) the
corresponding equations of the static problem can be derived
[11].

Solving equation (1d) with respect to T, as well as equation
(1c) with respect to M, we find the following partial dif-
ferential equation:

M’'=(RA-'R+SB~'S)y-RA-!'y’+SB-'Ry
-SB~ 'y’ —Iy+m @

Differentiating also equation (l¢) with respect to s and
using relation (4) we lead to:

* . "
V' =y+Hy -My+Ily +Al¢y-Am )
where:
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[ 1
b=18,]= | —x 0 o |,
a,
0 Ze+2 o9
a3K b3
0 4
L b, |
H=[n]= [ 0 K(1+—Z‘—> 0o 1,
2
(Sa)
—K(1+12—) 0
a;
) 0 0
M=[il= [ 0 00],I=[I;]=[0 0 0 ]
a
0 00 0o o0 2
by
as (75}
2400 0--2 9
_aZK b2 ]

Finally, differentiating equation (1) with respect to s and
combining the resulting relation with (1d) we find:

y"=Ky+Ey' —=My+Sy'+mByj —Bgq 6)
where:
b
K=[k;]= | — & 0o o0,
b,
b,
0 2200
b, "
0 0 0
* * b,
E=[¢,]= 0 K(1+~—) 07, (6a)
b,
{14+ =2 0
( ~
0 0 0
b,
00 0
00 O

The vectorial (3 X 1)-equations (5) and (6) form partial
differential linear nonhomogeneous system of the second
order referred to the three-dimensional harmonic forced
vibration of a circular beam, where the influences of rotatory
inertia and transverse shear deformation have been taken into
account.

The vectorial equations (5) and (6) are equivalent to the
following partial differential system of analytical equations:

\03 = ‘11; 1
vi=—f, (Ta)
Vi=1,

Journal of Applied Mechanics

Downloaded 02 May 2010 to 171.66.16.25. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm

Y =9 —a; L, =1712\1’2+"12\//ﬁ_a1';‘1
¥y — ¥ —ay 1Y = Oy ¢ + iy Y

(7b)
+ Iy} — @yt
¥y — a3l = 9y 93 — fmy; +1y3 —asiy
where:
f*x = =y +kyy +kpya+epys+mbiy, —big
*2 = = Y3+ knyi +kpy, +Enyi +mbyi, —baq, 70

* e
J3==yi+mb3y;—biq,
oy =—1/vy,

It should be noticed that by setting x = 0 into equations
(7a)-(7¢), and after simple manipulations, one may obtain
equations (1) of reference [6].

For the decoupling of equations (7a)-(7c) we make use of
the following analytical treatment: From the two first of (7a)
and from the combination of the last of (7b) with equations
(7a) we obtain:

*, *

o f{+f,=0 -

*’ * # * ’ *
Si+9anf+aslia f = a1y +Iny; = —asm
Also, the combination of the two first relations (76) and
equations (7a) gives:

. *

Y= —a L =nyy f3—aymy

.4 .-
Onvn =/ 3 —ay Loty —ny i = Inpyi +ayy
Finally, from equations (9), (7a), and (7¢), after some dif-
ferentiations and a little algebra, the following linear partial
differential equation of the sixth order with respect to the
translation y, results:

®

®

P H A 0,y + 05 + 0+ 055 o)
+ 07y +ogyi =0 (10
where the coefficients ¢;; 0 (i = 1, 2,...,8) are given in

Appendix 1.

Furthermore, based on equations (7a) and (75), the second
of relations (7¢), and equations (8) take the following form,
respectively:

=Y+ P+ ¥ HkyiHkyy, H kY, =k (11a)

= Y361y + 8,37+ wiy{ gy Y ud =p (11b)
where the coefficients p;; k3 65 ps ks p (V= 1,255 =1,2,3;
r=1,2,3,4)are given in Appendix 1.

Differentiating now equation (lla) with respect to s,
solving with respect to j;, as well as equation (115) with
respect to y;, we have:

— ¥ e e i kvt koys ki =k’ (12a)

. k6, +k 618, —k

= — 191 2 y 182 281 (12b)
k361 _k262 k361 _k252
k6, +k 6,8, —k

yi = 102 3 vy 282 381 (12¢)
38y — k28, k38, — k8,

where: :

g1 =R— 1Yy — B — K3 T M)y (13)

ga=k'+y{" —p i —pJ{
In the sequel, after a double differentiation of equation (12¢)
with respect to ¢ and using (12b), the following relation arises:

E VI E =181 1282 + 136 T Tudn (14)
in which:
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k8 +k; ki dy i LY g
e L Sy
(1449)
k 6
73=——A3—, T4=”'Ag', "A=kyb, ~k, 0,

Finally, after successive differentiations of relations (12a) and
(110), the following four linearly independent -partial dif-
ferential equations result:

~yi i+ i = gl
R
k y mir +k2y2 + k3ylll

ki i+ kyys + kY=g,
So, the system of seven partial differential equations (11b),

U4

(12a), (14) and (15) with unknown functions y,” ; y3; V33 ¥,";
¥’ yy 7 is derived which yields another differential
equation for the translation y,. In fact, eliminating these
unknowns we derive the determinant:

(15)

0 0 5 8 0 0 g
0 k k ks 0 0 g
1 & 0 0 & 0 gf
0 0 0 & -1 & 4
k, k, 0 0 ky 0 g7
0 0 0 Kk k, k3 &
6 & 0 0 &1 0 781+ Tag 138+ ks

=0 (16)

This relation, based on (14a), is transformed to a linear
partial differential equation of the sixth order with respect to
Y

It is worthwhile remarking that the solution of the dif-
ferential equation (10) is sufficient for the determination of
the displacements ¥, and ;. In fact, this can be achieved by
the third of equations (7a) being combined with the first of
(7D). Also, the solution of equation (16) is sufficient for the
determination of the displacements y, and v, from the first of
equations (15) and the first of (7a). So, one may conclude that
the three-dimensional forced vibrations of a circular beam can
be analyzed into the two following independent types of
forced vibrations:

Vibration 1: The transverse forced in the (I, 3)-plane
vibration and the simultaneous torsional vibration.
Vibration 2: The transverse forced in the (1, 2)-plane

vibration and the simultaneous longitudinal forced vibration.

Free Vibrations

For free vibration we may assume solutions for the
homogeneous differential equations corresponding to
equations (10) and (16) of the form:

Y3(s,1) = Js(s)e™

. 17
Ya(sst) =y, (s) €™ an

%
where @ and & are the independent natural frequencies
corresponding to the two previous kinds of vibration. So, one
may write the following relations:

(yl :y2’\//3)T= (.);l ,)—’2,\2/3)Te"‘”‘

s . (18)
G312 = (B3, ¥1,¥) T i

378/Vol. 51, JUNE 1084

in which ¥,; ¢, and ¥,; ¥, are functions with respect only to
s. Putting now the second members of equations (10) and (16)
equal to zero and introducing relations (17) in the resulting
differential equations, the following two ordinary equations
of the sixth order are obtained:

*
~ 20554 (0, - 020, + 94 07)5Y

y311/ " + (0]

+ 02— 0y + Do — a5, =0 (19)
AB+EA AT+AZ AH .
¥l —_ 'III/_ 'II_ :0 20
Y1 A Y1 A Yi A B g (20)
where the coefficients A; B; I'; A; E; Z, H are given in Ap-

pendix 1.

One may observe that both equations (19) and (20) are of a
similar form to equation (5) given in reference [9]. So, relative
to the determination of their solutions, we can make use of
equations (12)-(14) and (29)-(33) of the same reference. Of

*
course, we must, in advance, substitute the coefficients F; of
equation (5), reference [9], with the coefficients of equations
(19) and (20), respectively.

By now, the displacement components ¢,; ¢, and ¥,; ¢, may
be derived from relations:

. Poi
(a1, 0% — 99y — 10 )f 3+ f 1 — 1373

12 »
nmfdn —‘1111_9 ) @1
. = I-m by WPy ¥ — I
v = 3
022“‘021292
where: _ .
f*a =—Yi—m b392}73
and
i — I+ (o= P2V + K, 53
a Pk
B 22)
=0y (=J{+kyp, +EJ5—m byaty,)
where
L g5 +ki g
(ky = Pky) — ki (8, — &78y)

£1= — I+ ity +#3:’2)71/—#4:’4)71

&2 =I{" 0\ ¥ +p iy,
After the determination of the displacement components, the

internal forces M,; T\; T, and M,; M,; T; can be established
from equations (1¢) and (1d). Also the determination of the

natural frequencies & and Elwill be achieved from: () the
general solution of equations (19)-(22), (i) the equations
expressing the functions My; T,; Ts; M|; My; Ty, and (iif) the
suitable boundary conditions. Consequently, if we write the
general integral of equation (20) under the form:

6
Fi6s) = Y cib(s) 23)
iz
we have
6 * 6 * -
Y (8) = EC,‘A;'; ¥y (s) = Eci By M;(s)
i=1 i=1
6 * — » 6 * 6 *
= Eci Ty (s)= ZciAi; T,(s) = ECiEi (24)

i=1 i=1 i=1

where: (i) ¢; are integration constants that may be determined
*
from the boundary conditions, (/7)) & are functions of ¢?; &*; s
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being caIculated from equatlons (12)~-(14} of reference [15],
and (m)A ,,B,, I‘,, A,, E are functions of &?; of; s being
derived from relations (23) (22), the third of (1d), and the two
first of (1¢), respectively. Thus, for the case of a both fixed
ends circular beam the boundary conditions, corresponding to
the eigenfrequencies , are:

710)=7,(0) = ¥3(0)=0
7163 =7, (8) =93 (§) =
where § represents the total arc length. Using relations (23)
and (24) in combination with the boundary conditions given
in relations (25), for a nontrivial solution the following

determinant must be zero (this determinant is analogous to
the determinant (22) of reference [9]).

(25)

$,0) 3,00 &0 ...0)
A,0) 4,00 4,0 A 50)
BO B0 BO ...B©O
* * * * =0 (26)
3, (5) ,05) By(5) . Pe(S)
A5 A, 4.6 A6
B B B ... B(%)

The last r*elat}on leads to a transcendental equation with
respect to w?; w* of the form:

F(O)Z,w }\2,)\3,1[,12,13,’” E,g,EGIl,12,13,R @,F) 0 (27)
which, obviously, depends on the values of the parameters A,;
MLl Lysme g E; 1)y I; I Ry ¢; F. Based on an
analogous methodology, a new transcendental equ*ation can
be derived corresponding to the natural frequencies €2.

In the case when the effects of transverse shear deformation
and rotatory inertia are omitted (b, = b; = 0; la,J;4;1 =0, i
= 1, 2, 3) the matrices B and I being included in relations (2)
become singular and zero, respectively. So, as equation (4) is
not valid, through new analytical treatments and the
decoupling of a homogeneous vectorial system analogous to
(1), the following differential equations with respect to the
generalized displacements y,, y, result:

2kf+p £ —0p _ op
y/”lll — y/lll y//_ y =0 (28
' (2 —p) (Z-p) ' (W—=p)”! )

,V - __ o y””+ (62 — ,Yz Qz)y + 6262};3 =0 (29)
in which:

a a
E=K—3, p=a,me?, ,D=I<2+"‘§‘, U—KZ-——3-—(13mw

a; bl bl

(30)
a?=212,8 =,y =a,m, & =a,mx®

Also, the functions of relations (21) and (22) take the
following new form:

a; 2(12 +a;

vi= K (a, +a2)y k(a, +a2)y3 a1
Vo= —J;
and
_ £(2~p) -,,,,,,_{£(K£+«)—Kop i}-m
27 o(E2+%0) (&2 +x%0) P e
+{—G(EZK1”K 7 }yl Gla)

U3 =Ky, + 73
Note here, that the previous assumption of omittance of
transverse shear deformation and rotatory inertia can be
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accepted for flexible beams., Moreover, the assumption that
the expression 1¢,I;y; | can be omitted results from Rayleigh’s
investigation, where it was proved that this quantity is of
significance only for vibrations of high frequencies.

Applications and Numerical Results

Consider a uniform circular beam with both fixed ends
subjected to a harmonic motion due to a continuous vertical
load g,(s,t) = gs(s)e™. According to reference [9] the
general integral of the homogeneous differential equation of
equation (19) is given by the formula (23), in which the

*

functions ®; (i = 1, 2, . . . ,6) have the following expressions:
Casea:

* & *
&, =sin rys,P, =cos rys,P; =sinh us cos s, 32)

‘i’4 = cosh ux cos )\9,&>5 =sinh us sin )\s,fi(, = cosh us sin As
where r;, u, N are computed from relations (46) given in
Appendix 2.

(33)

* * * *
The functions ®;, &, ®s, $; have the same expressions as in
Caseaand r;, u, \are computed from relations (47) given in
Appendix 2.

* *
Case b: &, =sinhr; 5,9, =cosh rs

Case c:
<i>1 =sin r,s,%z =CO0S 1S, &;3 =sin As,
(34)

* #*
®, =cosAs,®; =sinus or sinh us, 1196 =cosus or coshus

where r;, u, N are computed from relations (48) given in
Appendis 2.

Cased: &>, =sinh rls,t*bz =cosh r;s @35)

* * * *
The functions ®;, ®,, &5, ¥ have the same expressions as in
Case ¢ and r|, u, \ are computed from relations (49) given in
Appendix 2.

The determination of the natural frequencies of the beam will
be established by using equations (19), (21), and the following
boundary conditions:

Ats =0

7300,8) = 41(0,) = ¥,(0,H =0 (36)
Ats = §(total length of the curved beam)
);3(510 = \Zl(j’t) = \ZZ(jat) =0
So, using equation:
¥(s,1) =A(s)Ce?, (37
in which
y_= (.);3!\/_/1 1¢Z)TaA= [aij];
C=(c,¢3, .- .,c) (=12, ...,6)

and the boundary conditions (36), for the nontrivial solution,
the following determinant must be zero:

a;5(0)
a,5(0)
35(0)

s (S)

a;6(0)
a6(0)
a3(0) | =0

oy (0)
ay{0)
a3;(0)

oy ($)

a3 (0)
a(0)
an(0)

g (5)

a;3(0)
ay(0)
a33(0)

043 (8)

2471 ()]
a4 (0)
34(0)

44 (5)

(38)
o ()

as; (8) a5 (8) asy(8) ass(S) ass(S) ase(S)

o (5) g (8) ag(5) ag(S) o (S) g (5)
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Table1 Dimensionless eigenfrequencies 1= ®F esT4/ELg

A
_ 40
k=
1/Kh,
3.333 6.227x10° 5.560 % 10°
6.667 1.485%x 10 "1 1.370x 10
13.333 2.257x1073 2.202x 10 73

Table2 Dimensionless eigenfrequencies = 02 Fes* 4/EL,g

A
) 100
17k=
1/Kh,
8.571 6.175x 10° 5.980 % 10°
17.143 1.434x10 ! 1.396x 10 ~!
34.286 2.255% 1077 2.248% 107

The elements of the previous determinant have the following
expressions for each of the foregoing cases:

Case a: Oy :0,0412 = 1,0{]3 20,0514 = 1,0{15 :O?O‘lﬁ :0,()(21 :0,
Qg =dy, 03 = 0,054 = dy, 0005 = — o,
oz = 0,003 =0ay,03, =0,

* *
a3y =dy,034 =0,035 = 0,036 = ~ f1,04 =B, apn =B,

* * * *
oy =By, = B0y = B 046 = O,

* *
o5 =do®, a5 =ay B,
* * * * * *
as3=do By +fo B, 050 =dy By + 1o By, 055 =do B — fo By,
* * * *
ase =do B —fody, 06 =a, Bag = —a; ¥,

* *
ag =d & +f1 %,

39

*

* * *
o =d| B +f1 8,06 =, & — /1 By,

ag=d b —f1%

*
Case b: ogp=ad (40)
The remaining elements will have the same expressions as in
Case a, if the functions & (i=1, . .. ,6) are substituted with

those given in relations (33).

Casec: oy =0,0); =103 =0,y =1,0;5 = 0,014 = 1,005, =0,
Qyy =p,03 =0,04 = dy, 005 = 0,006 = o, 0031 =
ay,ay =0,
a3 =d), 034 = 0,035 =f1,03 =0,

* Ll *
ay =9,0=H,05=>8,

* *
gy =Py,0u5 =9,

* * * *
oy = 8,051 =09 $ 05, =y By a5 =dp By, 41)
* * *
sy = do Py, 0055 = fo B 056 = [,
* *
ag =1 B,05=-a;%,

% % %
gy =d  B,00 = —d, By, 05 =1 %,

* *
age = — 1 D5 or fi

380/ Vol. 51, JUNE 1984

Cased: g =a, 3)2 42)

The remaining elements will have the same expressions as in
Case ¢, if the functions € (i = 1, . . . ,6) are substituted with
those given in relations (35).

The coefficients a;, d;, f; (/= 0, 1) corresponding to each
of the previous cases are given in Appendix 2. Finally, bar

over the function :f), denotes the value of this function for the
total length § of the curved beam.

The eigenfrequency equation (38) is solved numerically on a
digital computer for various values of the slenderness ratio A
= (§*F/I;)" and the ratio 1/« h for the case of a stubby and
a slender beam of square cross section of sides 4. The
respective numerical results are presented in Tables 1 and 2. In
all cases considered, the length §(= @/«) of the beam has
been kept constant. The results in the first column of each
table correspond to the dimensionless first eigenfrequencies,
in which the influence of the transverse shear effect and
rotatory inertia are omitted.

Table 1 is referred to a stubby beam with §/k#;, = 10.47 and
¢h /E = 1.08x1075. From this table the effect of the
dimensionless radius of curvature 1/k = 1/xh; and slen-
derness ratio \ upon the dimensionless first eigenfrequency
are given. It is clear that as 1/k increases (or equivalently the
angle @ decreases since § = @/« is constant) the first eigen-
frequency decreases appreciably.

Table 2 is referred to a slender beam with 5§/k, = 26.91 and
eh,/E = 0.42x 1075, From this table it can be seen that the
same influence of 1/« on the value of first eigenfrequency is
also valid.

Finally, by comparing the results of Tables 1 and 2 the
following conclusion may be derived: The effect of transverse
shear deformations on the eigenfrequencies may be neglected
even for practical design purposes for stabby beams; however,
as the radius of curvature decreases this effect for stubby
beams may be appreciable.

Conclusions

In this investigation an analytical treatment for the general
solution of the problem of the three-dimensional harmonic
vibrations of a circular beam, in the most general case of
response, is presented; the torsion-flexure axes of the cross
section of the beam coincide with the corresponding Frénet
trihedron. Among the most important results of this in-
vestigation one may list the following:

1. The decoupling of the partial linear vectorial differential
system governing the three-dimensional motion of the beam.

2. The proof that, in the general case of three-dimensional
vibration, the system corresponding to the previous
homogeneous one has two independent natural frequencies.

3. The possibility of determining these frequencies,
inlcuding the effects of transverse shear deformation and
rotatory inertia, and

4. For stubby beams with small values of the radius of
curvature the transverse shear effect on the eigenfrequencies
may be appreciable.
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APPENDIX 1
The coefficients of the linear partial differential equation
(10) are given by:

@
0, =2 K0, = Kk*;09 = —mbyk? (K2+ b—>;04=
3

—[(2K2'— —'Z‘Z") b3—K2((1112+a211)];0'5=—mb3;06
3

a,a,

=“mb3[(a112+0211)+ 11];07=al‘121112§08

* * "k
= —~mbya,a; 1,1 ;0=a,my'— a,d,,m; —aya, I, m; 43)

i

_n2101’;11””l9111922b343 —a,a,1,1,b3q; — b3 g3
+ (Dgg + 0y + 1130500395 — (118,15 + @na;11)b3 G5

The coefficients of the linear partial differential equations
(11) are given by:

p1 = — K20, =mbyky = k2 5ky = 135k
1
=mbxik=Dbq{ +bxq,;8, = b (b, +ay);
1
b
62=mb2 +a313 <1 + —2);#1 =
by

a; am b,
— =+ @iy = —azl;
b]K K b]K

by ,, 93 b,
e =asl; T;Il= —azh;y +b,q;+ TQI +a;1; 7‘]1

The coefficients of the linear ordinary differential equation
(20) are:

A=k 8, +ky—(k 6, + k)P B=kp +p,
—(kyps + )T =y (— &7 + pa &)
A=k 8, —ky — (K8, — ky)i?; E= 8, — 6,07;
Z=kypy —dip; + (P1517+0251 — ik —k2ﬂ3):’2

+(kyps — 8,05)a s H = (ky — k3 &) (— pa & + g &) (45)
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APPENDIX 2

The expressions of r;, u, A for the four characteristics cases
are as follows:
123

Casea: ri=(lz,! +ﬁ1/3)'/’,u= {[51 +(5? +p2)'/1]/2}

(46)
* * L "
>\=p2/2{[pl + (ot +pz)/11/2}
where:
Zy = —[{/ luu/21 + 7% +'{/|U/2| —7']/2]<0
b= — (/22 —F /3,0, = (323 +411/4) % (46a)
Case b: r\=(z, —F,/3)" 47
and u, A have the same expressions as in Case a.
2 =2+ 7" + /2= 7% >0 (47a)
and 51 , o2 have the same expressions as in Case 4.
Casec: r, =[(I;1/3)— Iz, 11%
u=(lzy| +F/3)" (48)

A=z +F/3)% or A=(F/3- Iz, )%

where:

7, — 2V [111/3 cos(x/3) > 0,0 <x =arccos[(v/2)V27/IB] <«

Zo= =2 UI1/3 cosf(m—x)/3} <0 (484)
zy=—2V II1/3 cos[(w+x)/3] =0
Cased: ri=(lz;| —1'%/3)'/2 (49)

and u, A, 2y, 25, 23 have the same expressions as in Case c.
For the four preceding cases we have:

v=(=2/2DF + (I/3)E Fy— B, TI=F, - F2/3,
* * * *

T=U2/4+H3/27,F'1 =0 "‘on's,F‘z =0y _920'4

+§407,ﬁ'3=-03+6206—6403 50)

The coefficients a;, d;, f; (j = 0, 1) for the foregoing cases
are:

Casea: ag= —A,ri+ (A, + A, K+ A))rP —A K
do= — Ay (u® + N — 6u2\?)
-4, +A2K+A3)(u2—)\2)—A1K

Jo= —4AuN(N —12) £2(A; + A, K+ A3)uN (51)
a,=K,r} —K,ri +K,r,
di =Kju(u* + N = 6u? M) + 4uN2 (A2 — u?)
+ K, = 3uN) + Kyu
1=K 82N — u)F A+ N = 6uPA2)
K (N = 3uBN) Ko\
Case b:‘ ay=—Art— (A + A, K+ AP —A K 52

a, =K1r? ‘*‘I(zri4 +K3I‘1

The remaining coefficients have the same expressions as in
Case a.
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Casec: ay= —Ayri+(4, + A, K+ A3t -4, K
do=—AN —(A, + A, K+ AN -4, K
So=—Aut —(A, + A, K+ AN - A K

(53)

a,=K\ri -K,ri +Ksr,

dl =K1)\5 "Kz)\3 +K3)\

fl =K1u5 —K2u3 +K3u
Cased: ag=—A,ri—(A, + A, K+ A0 — A, K .

a =K,ri +K,r} +Kyr,

The remaining coefficients have the same expressions as in

Casec.
For all the previous cases we have:
*
1,0 ~ 9y —nypyny 1 Iy
= » y A2=_._._........__T’ A3=_______—*
ny (9 —a; 1, Q%) ny (dy — a1, %) ny (%4 — a1, P)
* n 1
K=mb, 2, K1=A2‘—“‘LT, K, — [ (4, +A4,K+A3)ny — 1} —
022—(121292 022"‘(211192
*
Ny mb3ﬂz+123
Ky=A4, vl (55)

Iy — a1, (P 1922—021262
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This papers deals with the effects of initial geometric imperfections on large-
amplitude vibrations of cylindrical panels simply supported along all four edges. In-
plane movable and in-plane immovable boundary conditions are considered for
each pair of parallel edges. Depending on whether the number of axial and cir-
cumferential half waves are odd or even, the presence of geometric imperfections
(taken to be of the same shape as the vibration mode) of the order of the shell
thickness may significantly raise or lower the linear vibration frequencies. In
general, an increase (decrease) in the linear vibration frequency corresponds to a
more pronounced soft-spring (hard-spring) behavior in nonlinear vibration.

1 Introduction

The first investigation of the large-amplitude vibration of
simply supported circular cylindrical shells was performed by
Reissner [1]. Subsequent results by Chu [2] and Nowinski [3]
show that the nonlinearity of this vibration problem was
always of the hardening type. Evensen and Fulton {4] and
Evensen [5] demonstrated that the nonlinearity may be either
of the hardening or softening type depending on Evensen’s
aspect ratio and Evensen’s nonlinearity parameter. They
based their argument on the fact that the earlier results [1-3]
failed to satisfy the singlevaluedness requirement of the
circumferential displacement and they demonstrated the need
to include the driven mode as well as the companion mode
[4-6]. Their findings were qualitatively supported by ex-
periments [7, 8] and an excellent summary of the historical
developments (which includes the works of M. D. Olson, E.
H. Dowell and C. S. Ventres, S. Atluri and J. H. Ginsberg,
etc.) can be found in a review paper by Evensen [9].

The large-amplitude vibrations of open cylindrical panels
were examined by Reissner [1] and followed by Cummings
[10, 11]. It was found that the nonlinearity of this vibration
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problem can be classified as soft-spring or hard-spring type.
Extension of the work to include the effects of nonlinear
elastic foundations were examined [12, 13].

The effects of geometric imperfections on the large-
amplitude vibrations of rectangular plates, circular plates,
and spherical shells have been examined in the author’s earlier
papers [14-16]. The effects of imperfections on nonlinear
vibrations of closed cylindrical shells have also been in-
vestigated by Watawala and Nash [17]. However, the effects
of geometric imperfections on large-amplitude vibrations of
open cylindrical shells simply supported at all four edges have
net been examined. Further, the influence of various types of
in-plane boundary conditions (which have been demonstrated
to be of major concern in linear-free vibrations of cylindrical
shells [18]) have also not been studied. Since the cylindrical
panels are open, the singlevaluedness requriements of the
displacements need not and in fact, should not be enforced.

The present analysis is based on a solution of the nonlinear
Donnell-type dynamic equilibrium and compatibility dif-
ferential equations for a cylindrical panel written in terms of a
stress function and an out-of-plane displacement. The
geometric imperfections are taken to be of the same spatial
shape as the vibration mode. Based on the assumed sinusoidal
vibration mode shape, the stress function that satisfies the
nonlinear compatibility equation exactly is sought. The
nonlinear dynamic equilibrium equation is then satisfied
approximately using the Galerkin procedure.

Depending on whether the number of axial and cir-
cumferential half-waves are odd or even, the presence of
geometric imperfection may significantly raise or lower the
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linear vibration frequencies. Furthermore, the increase
(decrease) of the linear vibration frequency generally
corresponds to a more pronounced soft-spring (hard-spring)
nonlinear vibration behavior. In the special case of perfect
cylindrical panels (zero imperfection amplitude) it is found
that the in-plane boundary conditions do not affect the linear
frequencies, even though they may have a significant in-
fluence on the nonlinear hard-spring or soft-spring behaviors.
The parameter variations involving the flatness parameter
(Koiter [19] and Hui et al. [20]), the length to panel cir-
cumferential width ratio, and the number of axial and cir-
cumferential half-waves are examined.

2 Analysis

The dynamic analogue of the nonlinear Donnell-type
differential equations for cylindrical shells written in terms of
the out-of-plane displacement (positive outward) W and
the stress function F, incorporating the possibility of the
presence of geometric imperfections W, are (see [21] among
others)

[(1+in)ER? /(A (W, xxxx + Wi yvyyy +2W, xxyy)
+(1/R) (Fyxx) =Q(X,Y,1) = pW,;; + F,yy (W+ W), xx
+F, xx (W+Wo),yy = 2F, xy (W+ Wo), xv 1)
(WERQ+ )1} F, xxxx + F, yyyy + 2F, xxyy)
= (1/R) (W, xx) +[(W,xy)? +2Wo xy W,xy
—~(W+Wo)xx W, vy — Woyr W, xx] 2

where ¢ = [3(1 —»?)]"*2, »is Poisson’s ratio, X and Y are the
axial and circumferential coordinates, R is the shell radius, A
is the thickness, E is Young’s modulus, p is the shell mass per
unit area, Q(X,Y,? is the forcing function, 7 is the time,
i=(-1)!?, and % is the loss factor associated with the
complex modulus model for structural damping.

Introducing the nondimensional quantities (g, =
(cR/h) "2,

(wywo)= (W, Wo)/h, f=2cF/(Eh)3),
(x,y) =(qo/R) (X,Y)

q(x,,t) =[2R*/(ER*)Q(X,Y,1),
(w,) 2 =Eh/ (20R?) B )]

where w, is the reference frequency, the nondimensional
nonlinear dynamic equilibrium and compatibility equations
for cylindrical panels become

t=w,t_,

(I +i9) (Wygpex + Wy +2W, 1) +foxx
=(1/2)q(x.y,t) — (1/2)w,, &)
+ (2C) [f’xx (W+ wO)ayy +f’yy (W+ wO):xx _Zfny (W+ WO)’.\’y]

[1/(1 + ”I)] (f’xXXX +f’yyyy +2f9xxyy)
=W+ (20) [(Ww+ 2w0)sxyw»xy
- (w+w0)1xxw’yy “wo,yywyxx] (6)

The vibration mode, the initial goemetric imperfections,
and the forcing function are assumed to have the same spatial
distribution. The cylindrical panels are simply supported at all
four edges so that [14],

W, t), wolx,y), q(x,3,6)1
=[w(?), p, g(1)] sin(Mx) sin(Ny) ™

where w(¢) and p are the vibration and imperfection am-
plitudes normalized with respect to the shell thickness.
Furthermore, the axial and circumferential nondimensional

384 /Vol. 51, JUNE 1984

M=mmR/(Lgy)=md/ (20L),

wave numbers M and N are defined to be (the symbol 7 is
never used in this paper in order to avoid confusion with the
number of circumferential full-waves in a closed circular
cylindrical shell),

N=n/(20), 0=qyd/(27R)

®

In the foregoing, @ is the flatness parameter, d is the width of
the cylindrical panel defined by the circumferential curved
distance between the two longitudinal edges, L is the shell
length, and the integers m and 7 are the number of half-waves
in the longitudinal (X=0 to L) and circumferential (Y=0 to
d) directions, respectively. The flatness parameter is in-
troduced in order to lump the effects of the radius to thickness
ratio and the radius to panel width ratio into a single
parameter.

It will be shown from the computation of the definite in-
tegrals that is is necessary to specify the integers m and 7 in
addition to the specification of the wave numbers M and N.
Alternatively, one may specify m, 7, 6, and L/d. To compare
the results for cylindrical panels with that of a complete
circular cylindrical shell, it is convenient to define Evensen’s
nonlinearity parameter e and Evensen’s aspect ratio £ in terms
of the present notation.

S(Evensen) = 4c? N* = ci?/§?
¢£(Evensen)=M/N=md/ (Ln) ©

The in-plane boundary conditions at the two curved edges
(x=0andx=guL/R) are

Soyy=0 or u=0

Siy=0 or v=0 (10)
while at the two longitudinal edges y =0 and y = 276, they are,

Siy=0 or u=0

Sox=0 or v=0 an

Since the mixed formulation is employed, the displacement
boundary conditions can only be satisfied in the average (see
for example [7, 22]) among others. In-plane boundary
conditions type 1, 2, 3, and 4 are considered in this paper
(Appendix A4).

Substituting wy (x.) and w(x,y,?) into equation (6), the
stress function that satisfies the nonlinear compatibility
equation exactly is,

JS&xp,) =1 +in){cow(r) sin (Mx) sin (Ny)
+w(t)2+2uw ()] [c; cos 2Mx) +c, cos (2Ny)]

+E (1) (x2/2)+E, (1) (¥*/2)) (12)
where
¢ =i ¢, =(c/16)(N/M)?, ¢, =(c/16)(M/N)?
0T MEEN22 ! e

[E(0), B2 (0] = (e1e2)[W(t)* + 2pu)(®)] (13)

Finally, substituting w, (x,y), w(x,»,t), and f(x,»,{) into the
nonlinear equilibrium equation and applying the Galerkin
procedure (multiplying both sides by sin (Mx) sin (Ny) and
then integrating over the shell area), one obtains,

(1+in) (IM? + N*)2 —coM* 1w (1)

+Iw(D)? +2uw ()AL Hyey)) = (1/2)q(2) — (1/2)w (1),
+A+m) W) +pl{ (—=d)Iw () +2uw ()] +dyw(1) ) (14)
where (d, and d, are independent of the geometric im-

perfection amplitude),
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05}~
T V=03, m=l d, =(2c) [N*e, + M?e, + 2M*N*(c, +¢,)]
o4t BL?N IN-PLANE B.C. dy =2c) (8M*N*co)(I, H, — I H3) (15)
'r_'z TYPE | In the foregoing, the integrals I,, I,, I, H,, H,, and H; are
] e > . defined to be (z=g,L/R),
BORS :
HE 3 e i, I, 13)=(1/Z)S [sin(MXx), sin® (Mx),
Y ) sin (Mx) cos? (Mx)]dx
ﬁ\ B (i) means ms=i, L/d=i 278
RN (Hy, Hy, Hy)=[1/Qa0)] | [sin(Ny),
o \\,\ sin® (Ny), sin (Ny) cos® (Ny)] dy (16)
“.\; i) \ Thus, if m is odd, I,=2/(mw), LL,=4/(3mw), and
i G I, =2/(mm) while if mis even, I, =I, = I, =0. Further if 7 is
: \ " odd, H, =2/(Air), H, =4/(3AT), and H, =2/(3i) while if i
O is even, H, = H, = H; =0. Finally, if both m and s are odd,
. IIHI =4/(mfl7l'2), 12H2—13H3=4/(3mﬁ71'2),
/\ dy =64cM2 N2 cy/ (3miiT?) ’ 17
0 _— SN e o andotherwise, Iy H, =0, I,H, —I;H; =0, and d,=0. The
05 3t l b2 ~--3-735774 quantities e, and e, are constants that depend on the in-plane
?\‘ : ‘,;.‘f" boundary conditions and they are defined in Appendix 4.
P RocH The preceding nonlinear ordinary differential equation in
o e time can be written in terms of the well-known Duffing’s
oIt ﬁ-\\: o equation with an additional quadratic term in the standard
“u form,
I D W(t) i+ lew (1) + (ekay) w(6)2 + (k) w(1)31(1 +in) =q(¢)

Fig. 1(b) Nonlinearity parameter versus fiatness parameter for perfect
cylindrical panels (7 = 1) (18)
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Fig. 2(b) Linear frequency (k”2 = wlw,versus imperfection amplitude
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Fig. 2

where
k=Q){ (M*+N*)
+ [MY/(M? + N +(2p2d, —pdy)+8ul Hie, )

6=2d\/k, 02:(3‘[Ld1—d2+411Hlel)/d1 (19)

In the special case of an infinitely long perfect cylindrical
panel (=0, L/d =infinite, and M = 0), one obtains,

ek=2N*, k=4cN?e, and a,=20,H,/(cN*) (20)

It should be noted that for a perfect cylindrical panel (u=0),
the linear vibration frequency defined by k'/? is independent
of e; and e,. That is, the linear vibration frequency is in-
dependent of the in-plane boundary conditions. Finally, since
k in equations (18) and (19) are independent of the definite
integrals I,, I,, I, H;, H,, and Hj, the linear vibration
frequency is independent on whether the number of axial and
circumferential half-waves are odd or even.
Assuming that the forcing function is periodic such that
@Q=w/w;)
q(t) =q, cos (wt) =q, cos ({t) 21

the solution of the linearized (neglecting the quadratic and
cubic terms) differential equation is,

w(t) =A cos () 23)
where the absolute value of the complex quantity A4 is,
/k ;
lA] = (4:/K) @3)

(11— @/ +72]77

386/ Vol. 51, JUNE 1984

The backbone curves for large-amplitude free vibrations of
simply supported cylindrical panels with no damping can be
computed by solving the Duffing-type equation using Lin-
stedt’s perturbation method. It follows that the ratio of the
nonlinear to the linear vibration frequency is related to the
vibration amplitude 4 by (see the Appendix of [15] and note
that 4 is measured from the deformed, static state),

Q/Qy=1+rA%2 —(15 €A4*/256) (24

where
r=(3¢/8) — (5a,%€%/12) = (3e/8)[1 — (10a,%€/9)] (25)

Thus, at least for small values of the vibration amplitude A,
the sign of the nonlinearity parameter r (not to be confused
with Evensen’s nonlinearity parameter defined in [4, 5])
determines whether the large-amplitude vibration of cylin-
drical panels is of the hardening or softening type. A positive
value of r indicates hard-spring behavior while a negative
value of r indicates soft-spring behavior. A larger positive
value of  indicates a more pronounced hard-spring behavior.

3 Results and Discussions

Figure 1(a) shows a plot of the linear vibration frequency of
perfect cylindrical panels (defined to be k'? = w/w,) versus
the flatness parameter (defined in equation (8)) for various
values of md/L and n. Note that the results for the perfect
panels are independent of the in-plane boundary conditions as
well as independent of whether the number of axial and
circumferential half-waves are odd or even. The expression
for k in equation (18) can be rewritten in the form (m =
md/L).
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Fig. 3 Linear frequency (k”2 = wlw,Jversus imperfection amplitude for
0=2(m=1,Lid=1)

k=Q){[(R? + a%)?/(166%)] + [m*/(m? + r%)?]) (26)
where it may be observed that the term involving §* will
rapidly become negligible for 6 =4.

The corresponding nonlinearity parameter r is shown in
Fig. 1(b) for each of the four types of in-plane boundary
conditions, keeping ri=1. For a fixed value of the flatness
parameter 6 and for each type of in-plane boundary con-
dition, it can be seen that the m=2, L/d=2 curves lie above
the m=1, L/d=1 curves even though they both imply
md/L =1 (that is, the same value M). For a large value of the
flatness parameter 8, the nonlinearity parameter approaches
zero so that the nonlinear frequency is more or less the same
as the linear frequency (at least for small-vibration am-
plitude). On the other hand, for sufficiently small values of 6,
the nonlinearity parameter approaches the flat plate limit
(6= 0) with zero slope. As noted earlier, a positive value of the
nonlinearity parameter r denotes hard-spring behavior while a
negative value of r denotes soft-spring behavior.

Figure 1(c) shows a plot of the nonlinearity parameter r
versus the flatness parameter § for perfect cylindrical panels
for four types of in-plane boundary conditions, keeping 71=2.
Here, for each type of in-plane boundary condition, the
curves for m=1, L/d=1 coincide with the curves for m=2,
L/d=2 because the product of the integrals I, H,, I,H,, and
I,H; vanishes for /i=2 regardless of whether m is odd or
even. All four curves converge to zero for sufficiently large
values of the flatness parameter 6.

Figure 2(a) shows a graph of the linear vibration frequency
(k"% = w/w,) versus the amplitude of the initial geometric
imperfection u for §=0.5 and 1.0, keeping m=1, L/d=1,
and 7= 1. Since the out-of-plane displacement is defined to be
positive outward, it is clear that a positive value of the im-
perfection amplitude u for the m=1, i = 1 case will further
increase the shell curvature. On the other hand, a small
negative value of p will actually reduce the shell curvature
since the perfect cylindrical panel has an outward curvature
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while the geometric imperfection has an inward curvature (the
curvatures tend to cancel out). A sufficiently large negative
value of u means that the shell actually has an increasingly
predominant inward curvature. From this figure, it can be
seen that an increase (decrease) of the shell curvature caused
by the presence of the geometric imperfection will also in-
crease (decrease) the linear vibration frequency.

It is interesting to observe from Fig. 2(b) that in the case
m=2, L/d=2, fi=1, the linear vibration frequency is in-
dependent of the sign of the imperfection amplitude p. This is
because the geometric imperfection is taken to be of the same
shape as the vibration mode so that for a panel with two axial
half-waves, the shell actually increases its curvature for half
of the cylindrical panel (say from X=0 to X=L/2) whereas
its curvature decreases for the remaining half of the panel.

In the special case when either the number of axial half-
waves m or the number of circumferential half-waves 7 (or
both) is even, the products of the definite integrals I, H,,
I, H,, and I, H, vanish. Thus, equations (17) become (d, = 0).

k=Q2){ (M? + N2+ [M*/(M? + N?)?] + (4cu?)[N?e, + M?e,

+2M2N2(C1 +C2)]}

6=[Nze| +M232 +21\42N2 (C] +C2)] (4C/k)
a2 = 3,LL

In the further special case when M=N, it may be observed
that the quantity N%?e, + MZ?e, remains invariant for the in-
plane boundary conditions type two and type three. Con-
sequently, the linear frequency curves (as well as the
nonlinearity parameter curves) for the type two boundary
condition coincide with that for the type three boundary
condition.

For a larger value of the flatness parameter 6 =2, it is clear
from Fig. 3 that for the important special casem=1, n=1,a

negative value of the imperfection amplitude will reduce the
shell curvature and thus, the linear frequency decreases. On

@7
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Fig. 5

the other hand, a positive value of u will increase the cur-
vature and thus, increase the linear frequency. For brevity,
the corresponding curves for m=2, L/d=2, and 7i=1 will not
be shown. They are found to be independent of y and they lie
between £'/2 =0,725 and 0.85 for —1.5<p=<1.5.

Figure 4 shows a graph of nonlinearity parameter » versus
the imperfection amplitude u for the flatness parameter
6=0.5, m=1, L/d=1, and 7i=1. Comparing the top sets of
curves in Fig. 2(a) with Fig. 4, it can be seen that the minimum
peak for the linear vibration frequency corresponds to the
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maximum peak for the nonlinearity parameter. In general, an
increase in the linear vibration frequency (due to the presence
of the geometric imperfection) is accompanied by a decrease
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in the value of the nonlinearity parameter r. The maximum
peaks for the nonlinearity parameter versus flatness
parameter curves corresponds to negative values of the im-
perfection amplitude and thus, the results depend on the sign
. of the imperfection amplitude. For brevity, the corresponding
curves for =0.5, m=2, L/d=2, and 7i=1 will not be shown.
Again, they are independent of the imperfection amplitude
(symmetrical with respect to u). The curves are shifted to the
right with maximum peaks correspond to u=0.

Figure 5(a) shows a graph of the nonlinearity parameter
versus the imperfection amplitude for 6=1, m=1, L/d=1,
and si=1. Comparing Figs. 4(@) and 5, it can be seen that the
maximum peaks are now shifted further to the left. This is
because for large values of the flatness parameter, a larger
negative value of the imperfection amplitude is needed to
cause the shell to possess an inward curvature (the perfect
cylindrical panel initially has an outward curvature). Again,
comparing the lower sets of curves in Fig. 2(e) with Fig. 5(a)
for #=1, an increase in the linear vibration frequency is
associated with a decrease in the nonlinearity parameter. The
curves for =1, m=2, L/d=2, and 7i=1 are shown in Fig.
5(b). These curves are symmetrical with respect to u with
maximum peak at u=0. Similar trends for §=2 are displaced
in Figs. 6(a, b) and it can be seen that the m=L/d=1 and
m=L/d=2 curves no longer resemble each other.

4 Concluding Remarks

The effects of initial geometric imperfections and four
types of in-plane boundary conditions on the linear and
nonlinear vibration behavior of cylindrical panels simply
supported along all four edges have been examined. Keeping
7=1 and fixing the value of 8, it is found that for an imperfect
cylindrical panel, the linear vibration frequency as well as the
nonlinearity parameter for the two cases, (im=1, L/d=1) and
(m=2, L/d=2) are different. In general, an increase
(decrease) in the linear vibration frequency is accompanied by
a decrease (increase) in the nonlinearity parameter.

Extension of the present work to large-amplitude vibrations
of circular cylindrical shells, enforcing the exact simply
supported and clamped boundary conditions as well as the
exact singlevaluedness requirement of the circumferential
displacement, is in progress.
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APPENDIX A

In-Plane Movable and In-Plane Immovable Boundary
Conditions

To examine the in-plane boundary conditions in the mixed
formulation, it is necessary to express the stress function F in
terms of the axial, circumferential, and out-of-plane
displacements U, V, and W in the form, (letting n = O and ¢,
€y, and ¢, are the strains),

(1= )F,yy) = (Eh) (e +re,)
(1 - VZ)(FyXX) = (Eh) (V€x+€y)

I+ v} (=F,xy) = (Eh) (e) (A1)
These relations imply,
F,yy —vF, xx =(Eh) ¢,
F,xy —vF,yy=(Eh) ¢, (A2)

Equations (A1) can be written in nondimensional form in
terms of the displacements, (U = hu/qqy, V = hv/q,),

(L =2)(f,py) =ty + (9) (0, + W) + () [(W+2Wp),, W, e
+ (») (W+2wy),,w,,]
A =2 Wfoxx) = vl + 0, + WA () [P(WH+2W0),, W, 5
+ (w+2wq),,w,,] (A3)

Likewise equations (A42) can also be expressed in non-
dimensional form [20]

f!yy - Vf9xx =Ux +C( W+2w0);xw;x
f»xx_Vf’yyzv:y+W+C(w+2w0)ayw’y (A4)

The four types of in-plane boundary conditions under
consideration are,

JUNE 1984, Vol. 51/ 389

Downloaded 02 May 2010 to 171.66.16.25. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



Type1 In-Plane Movable on all four edges.

el=0 and e2=0 (AS)

Type2 Curved Edges Immovable and Longitudinal Edges
Movable. Since the longitudinal edges are movable
in the circumferential direction, it is clear that
foe = 0 at the two longitudinal edges. Fur-
thermore,

Soyy = (cM*/4) [w(£)? +2pw(£)] + sinusoidal terms  (A6)

so that

el=0, €2=CM2/4 (A7)
Type3 Curved Edges Movable and Longitudinal Edges
Immovable. Since the two curved edges are
movable, it may be concluded that f,,, = 0 at

these two curved edges. Furthermore,

390/ Vol. 51, JUNE 1984

Soxe=(cN?/8) [w(£)* +2uw(1)] + sinusoidal terms (A438)

so that
e, =cN*/4, ¢,=0 (A9)

In-Plane Immovable on All Four Edges.
Collecting only the constant terms in equation
(A2) one obtains,

(1- vz)f,yy = (c/HM? +oN?) [w(t)? +2uw(1)]
+ sinusoidal terms

(1 = 22)f e = (/M2 + N2) [w (1) +2pw(1)]

Type 4

+ sinusoidal terms (A10)
so that,
e, =c(¥M? + N2)/[4(1 — v¥)]
e, =c(M?* +¥N?)/[4(1 — )] (A1)
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systems together with the nonparametric identification of the reduced-order model
generalized nonlinear restoring forces is presented for reducing the order of discrete
multidegree-of-freedom dynamic systems that possess arbitrary nonlinear
characteristics. The utility of the proposed method is demonstrated by considering a
redundant three-dimensional finite-element model half of whose elements in-
corporate hysteretic properties. A nonlinear reduced-order model, of one-third the

order of the original model, is developed on the basis of wideband stationary
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1 Introduction

Model-order reduction is a subject of increasing interest in
the field of applied mechanics which has been motivated by
the need to develop lower-order models corresponding to
complicated structural systems whose motion is to be
analyzed under arbitrary dynamic environments. Among the
specific areas that have made extensive use of reduced-order
models is (1) the active control of large-scale aerospace
vehicles and (2) the eigenvalue problems encountered in the
use of finite element methods in conjunction with large
structural dynamic systems.

While an extensive body of literature is available for
problems dealing with reduction schemes (also known as
eigenvalue economization methods) for linear systems, few
results are available in the published literature regarding
condensation methods suitable for use with nonlinear
dynamic systems.

This paper presents an approximate method for reducing
the order of discrete multidegree-of-freedom dynamic systems
that possess arbitrary nonlinear characteristics. The reduction
method combines the ideas of standard mass condensation
techniques that are widely used with linear systems, together
with recent developments in the nonparametric identification
field, to develop a rational approach for a systematic
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random excitation and the validity of the reduced-order model is subsequently
demonstrated by its ability to predict with adequate accuracy the transient response
of the original nonlinear model under a different nonstationary random excitation.

procedure to reduce the order of the class of systems under
discussion. The utility of the proposed reduction method is
illustrated by considering a redundant three-dimensional
finite element model consisting of nonlinear truss elements
and subjected to wide-band random excitation. The range of
validity of the approach is evaluated with regard to the
deviation error between the response time histories of the
original and reduced models.

2 Formulation

2.1 Model Reduction. Consider a discrete nonlinear
dynamic system whose motion is governed by

MX+£(x,x)=p(), {1
where
M = diagonal mass matrix of order n,
x(¢) = displacement vector = {Xx;,X3,...,%,}7,
f = function that represents nonconservative
nonlinear forces,
p{t) = excitation vector.
Assume that an ‘‘equivalent’’ stiffness matrix XK

corresponding to the range of motion of interest can be
determined. This step could be accomplished, for example, by
using modal identification techniques to process experimental
measurements from the response of the physical system.
Alternatively, in the case of large nonlinear finite element
models, where the time history response is obtained by
treating the system as a piecewise linear model, matrix K is
directly available since it is repeatedly reconstructed to reflect
changing response levels.

Using standard mass condensation techniques [1-13] that
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are used in the finite element field to eliminate ‘‘slave”’
degrees of freedom associated with relatively small motions
while retaining ‘‘master’’ degrees of freedom corresponding
to larger deformations, the eigenvalue problem associated
with the linearized reduced-order systems is

(K, —\M,)x, =0 @)

with
x=Rx,, 3)

R=T1T2...TL, (4)
where

vector of order r=n—L whose r components
correspond to the master degrees of freedom;
transformation matrix of order n X r representing
the cumulative effects of L reduction loops;
transformation matrix of order (r+1)xr
representing the condensation effects of single
loop L, with {x,,x,}T=T;x;;

M, = condensed mass matrix of order rxr,
M,=RTMR,;

K, = condensed stiffness matrix of order rxr,
K. =RTKR;

x; = vector of order r representing the master degrees
of freedom;

X, = vector of order L representing the slave degrees

of freedom (DOF).

2.2 Restoring Force Estimation. Now solving the
eigenvalue problem in equation (2) results in the trans-

formation

X, =¢,u %)
where ¢, is the eigenvector matrix of order rX r, and u is the
vector of generalized coordinates of order r,
Su )l (6)

Making use of equations (3) and (5), the system equation of
motion equation (1) can be converted to the form

u={u;,u,, ..

Nii + h(u,w) = q () @)
where O is a diagonal mass matrix of order r X r given by
M= 7RTMR,, ®)

h is a vector of order r corresponding to the transformed

nonlinear forces acting on the system,
h(u,u) = ¢/ R7H(x,%), &)

392/Vol. 51, JUNE 1984

and q(z) is a vector of order r corresponding to the
generalized excitation forces,

a(n) =¢/R"p(1). (10
An alternative form of equation (7) is
B"MX+h(u,0)=BTp(t), an
or h(u,i) = B7(p (1) — M%), (12)
where B is a constant matrix of order n X r given by
B=R¢o,. 13)

Note from equation (12) that if the terms appearing on the
right-hand side are known, the time history of each com-
ponent of vector h can be determined.

Note also that in the case of a linear system, due to the
orthgonality condition associated with ¢,, the set of equations
represented by equation (12) are decoupled; i.e., each com-
ponent A; of h depends only on the ith generalized coordinate
u; rather than on all components of u.

Guided by the preceding observation, the central ideal of
the present condensation technique is that in the case of
nonlinear dynamic systems commonly encountered in the
applied mechanics field, a judicious assumption is that each
component of h can be expressed in terms of a series of the
form: N

hi(uy‘i)zhi(uiﬁ)) (15)

where

Jmax,-

hi(uiy= ) AD (v, o).
=1

J

(16)

The approximation indicated in equation (15) is that each
component #; of the nonlinear generalized restoring force h
can be adequately estimated by a collection of terms 4/’ each
one of which involves a pair of generalized coordinates
(displacements and/or velocities). The particular choice of
combinations and permutations of u, and #; and the number
of terms Jp,,, needed for a given ; depends on the nature and
extent of the nonlinearity of the system and its effects on the
specific ‘“‘mode’’ i. Note that the formulation in equation (16)
allows for ‘‘modal’’ interaction between all modal
displacements and velocities, taken two at a time.

Another useful feature of the proposed reduction approach
is that it can be used directly (without the intermediary step of
static condensation) to condense-out insignificant eigenmodes
of the original system.

2.3 Series Expansion. The individual terms appearing in
the series expansion of equation (16) may be evaluated by
using the least-squares approach to determine the optimum fit
for the time history of each ;. Thus, #{" may be expressed as
a double series involving a suitable choice of basis functions,

B (u )=~ AP f) vl), a7
A = ; Z{)“)CW T, (V)T (o). (18)
Let the deviation error between #; and its first estimate A{" be
given by

O i) =k, (u,1) - A0, v))). (19

Equation (17) accounts for the contribution to the generalized
force #; of state variables v{" and v appearing in the form
(v(,li’)" (v). Consequently the residual error as defined by
equation (19) can be further reduced by fitting h{) by a similar
double series involving variables v(lzi) and vzi):

P ) = AP o) vf)), (20)
where
AP = 1 100 T )T, (v). @1
k1
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Similarly, the contribution of terms involving products of
various powers of combinations of vﬁ.) and v(23’,) can be found
from

AP (u,8) = A0 (u, W) - AP 0, vP), 22)
and
h?) (u,u1) = ﬁ§3)(v(131) ’U(z? s 23)
where
. ) @) ORI
A = EEG)CH’ Ty (01T (vy,). 24
]

By extending this procedure to account for all ‘‘modes”’
that have significant interaction with ‘“mode’’ i, equation (16)
is obtained.

2.4 Data Processing. Consider a typical case where the
method under discussion is likely to be applied. For example,
experimental measurements from a physical system are to be
analyzed or the output of a finite element code is to be
processed. In both cases the following steps can be per-
formed:

(1) Measure x (1), x(¢), X(¢), and p(#) and digitize each
one at a sampling rate that is appropriate for the frequency
band of interest.

(2) Compute, measure, or estimate the diagonal mass
matrix M and the corresponding stiffness matrix K for the
discretized n- DOF nonlinear system by treating the physical
structure or the nonlinear mathematical model as an
equivalent linear system over the response range of interest.

(3) Apply a sufficient number of condensation loops as
outlined in the foregoing to reduce the order of the system to
an acceptable value and to obtain the transformation matrix
R of equation (3) which relates all the system DOF’s to the
primary DOF’s,

(4) Having determined matrixes M, K, and R, solve the
eigenvalue problem (equation (2)) associated with the
reduced-order system, thus obtaining the modal matrix ¢,
whose columns constitute estimates of the prominent
deflection shapes of the nonlinear system.

(5) Use equation (12), whose right-hand side involves at
this stage known quantities, to compute h (¢), the time history
of the generalized nonlinear restoring forces associated with
the estimated deflection shapes.

(6) Making use of equations (3) and (5), determine the
time histories of u(#) and u(¢), the generalized displacement
and velocity, respectively, from the following relationships:

u(t) =Ax,(t), a(t)=4x%, (1), (2%
where A is a constant square matrix of order r X r given by

A=¢7L. (26)

(7) Following the procedure outlined in Section 2.3,
develop an analytical expression in the form of the series
indicated in equation (16) to estimate each component A;(¢)
of h(¢) in terms of suitable pairs (v, v,) of the generalized
coordinates.

(8) The evaluation of a sufficient number of the doubly-
indexed series coefficients Cy,; associated with each term of the
various series terms 4;) (¢) constitutes the termination of the
data processing phase of the problem under consideration.

2.5 Least-Squares Fit. Using two-dimensional or-
thogonal polynomials to estimate each A; (u,i) by a series of
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approximating functions ﬁ,-(/) of the form indicated in
equation (18), then the numerical value of the Cy; coefficients
can be determined by invoking the applicable orthogonality
conditions for the chosen polynomials. While there is a wide
choice of suitable basis functions for least-squares ap-
plication, the orthogonal nature of the Chebyshev
polynomials and their ‘‘equal ripple’’ characteristics make
them convenient to use in the present work.

Note that in the special case when no cross-product terms
are involved in any of the series terms, functions h can be
expressed as the sum of two one-dimensional orthogonal
polynomial series instead of a single two-dimensional series of
the type under discussion.

2.6 Response Prediction. Once the coefficients ¢’ C§)
have been extracted from the nonlinear system response in the
manner outlined in the foregoing, they constitute a reduced-
order nonparametric model of the system. When used with the
same excitation employed for identification they can
reconstruct the (approximate) response of the higher-order
model. Even more important is the ability to use these
coefficients to predict the estimated response time history of
the nonlinear system when subjected to an excitation signal
that is different from that used for identification purposes.

The procedure for the approximate model response
predictions is based on the (numerical) solution of the
reduced-order system equations of motion expressed in the
form of equation (7):

My () +h,; () =q; (1), (27)

Given p (¢) and initial conditions x (#,), X(Z,), once k; (¢} is
determined from equation (16) and making use of equation
(10) to determine g, (¢), the governing equations of motion
(27) can be incrementally (numerically) solved to compute the
response u; at the next time increment (4 Af). The ap-
proximate response time histories of all of the system’s n
degrees of freedom may then be found from

x(t) =Bu(y), 28)

and the nonlinear restoring forces acting on the system will be
found from

i=1,2,...,r

f(x,x)=p (1) —MBii(1). (29)

2.7 Error Sources. Referring back to equations (7)-(10),

it will be found that

() =M""(q(t) —h()), (30)
=M "B (p(1) —£(1)), GD
=9~ BTMR(1). (32)

An alternative way of relating u to X is via the condensation
procedure as expressed in equations (3) and (25):

u ()= (A :O)K—;}

(33)

u(?) =Ax, +0x, (34)

Thus, at any time ¢, there is an error introduced in
estimating u and u that depends on the significance of the
displacement and velocity, respectively, associated with the
secondary (slave) degrees of freedom. However, by using
equation (32) rather than (34), the generalized acceleration
i (#) can be determined exactly from the knowledge of the
system acceleration.

Then, even if the series expansion and the least-squares
procedures did not introduce any subsequent errors, the use of
u and 1 to recover x and x will result in approximate values X
and x given by

X(t) =Bu(t) = BAx, =Rx,. 35)
Due to the nature of the condensation method under
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discussion, the upper part of the matrix R which is associated
with the primary (master) degrees of freedom is an identity
matrix of order r.

Besides errors arising from (1) the choice of the generalized
state variables, (2) from the accuracy of the least-squares fit
of the generalized restoring forces, and (3) from the series
truncation error, there is (4) an error introduced in the
numerical solution of equation (27) due to the approximate
nature of equation (10) in which the generalized excitation
‘q(¢) is related to the actual excitation p(¢) by matrix B which
is approximate in nature. Sources of error included in B are
order-reduction (R) and nonlinearities (¢,).

3 Applications

3.1 Example Nonlinear Hysteretic Model Charac-
teristics. To illustrate the application of the method under-
discussion, consider the hypothetical finite element model
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shown in Fig. 1. This three-dimensional structure consists of
three equal masses m; that are interconnected by means of 12
truss elements anchored to ground at three locations thus
resulting in a redundant system with nine degrees of freedom
(DOF).

The arbitrary nonlinear elements, denoted by g;, which are
interposed between the masses and between the support
points, are dependent on the relative displacement z and
velocity Z across the terminals of each element. In the case of
elements with polynomial nonlinearities, the elements assume
the form
(36)

where ;) is the linear stiffness component, «,
corresponds to the coefficient of the linear viscous damping
term, a3 ) corresponds to the coefficient of the nonlinear
cubic displacement term, and other terms represent higher-
order powers of z and/or Z. Thus, depending on the sign and

gi()=0o; Dz+a, Vz+a, 02 . ..
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magnitude of the a{" coefficients, the form g; in equation
(36) can be made to represent a wide class of commonly
encountered types of nonlinearities in physical systems.

To illustrate the validity of the present method, nonlinear
elements posssessing hysteretic-type force-deformation
characteristics will also be considered. Such a nonlinearity not
only involves cross-product terms of displacement and
velocity, but is of course not even expressible in polynomial
form. Hysteretic systems, widely encountered in all areas of
applied mechanics, are among the more difficult types of
nonlinear properties to investigate and identify [14-25].

In the example structure under discussion, three elements
(84,89, &10) are taken to be linear, three elements (g,, g,, &)
have polynomial-type (hardening) properties, and the
remaining six elements (g3, &5, 7, &3, &€11» £12) have bilinear-
hysteretic characteristics in which different load paths are
traversed in loading and unloading. For such hysteretic
elements, the «f coefficients have the following significance:

a; ) =k =stiffness in the elastic range
a, ) =viscous damping term in the linear range
a; ) =k, =stiffness in the nonlinear range

oy () =viscous damping term in the nonlinear range
as 0 =z, =yield displacement level.

The geometrical configuration as well as the material
properties of the elements of the nonlinear model are given in
Fig. 1 together with the indexes that relate the structure nine
degrees of freedom to the global (X, Y, Z) axes.

3.2 Test Excitation and Response Measurement.
Subjecting the nonlinear system to a wideband stationary
random excitation, which is applied uniformly to
each of the three masses in the global X direction for a length
of time much longer than the longest system period of in-
terest, results in the response time history depicted in Fig. 2.
This can be thought of as an equivalent test in which the
structure is mounted on a vibration generator. For ease in
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Fig. 5 Dominant generalized displacements u(t) and velocities u(t) of
reduced-order model

visualizing the qualitative behavior of the system, the same
scale is used for plotting the displacement time histories of all
nine DOF.

By inspecting the ‘‘measured’’ force-deformation
characteristics that are plotted in Fig. 3, it is clear that the
observed characteristics match the constitutive properties
shown in Fig. 1(b). Note from Figs. 3(e) and 3(/) that
hysteretic members gs and g, did not deform into their
inelastic range. However, the remaining four hysteretic
members (g3, g, &3, and g,,) sustained significant defor-
mations beyond their yield level. All the hysteretic elements
used had a yield level z,=0.2 and a stiffness ratio
a=k,/k, =0.414, It can be seen from Fig. 3(c), (g), (1), and
(k) that the test structure is undergoing a large nonlinear
deformation of the bilinear hysteretic type with a ductility
ratio u=(peak deformation)/(yield deformation) of u=5.0.

3.3 Reduction of Model Order. Following the model-
order reduction procedure given in Section 2.1, an equivalent
stiffness matrix K of order 9 X9 corresponding to the smail
oscillations (linearized) range of motion is determined.

Assume that it is desired to reduce the order of the model
from nine DOF to three DOF. By retaining those DOF whose
motion is dominant (i.e., DOF 1, 4, and 7), DOF 2, 3, 5, 6, 8,
and 9 are selected as ‘‘slave’” DOF.

A measure of the degree of approximation introduced by
condensing the slave DOF is indicated in Fig. 4, where the
time histories of the secondary components of the ap-
proximate displacement vector given in equation (35) by
x =Rx, are plotted at different scales. Due to the nature of the
transformation matrix R no approximations are introduced in
the primary components of X; consequently the time histories
of the first three components of X corresponding to DOF 1, 4,
7, respectively, are identical to their measured values. Note
that the deviation errors shown in Fig. 4 are purely due to
condensing out the secondary DOF; they do not include errors
due to the approximations inherent in the series expansion of
equation (16).
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3.4 Identification of Reduced-Order Model. Processing
the ‘‘experimental’”’ measurements shown in Fig. 2 by
following the procedure outlined in Section 2.4 and by using
equation (25) and transformation matrix 4= ¢, ~!, results in
the modal time history response shown in Fig. 5.

Plots of the time histories of the dominant components of
the generalized restoring force A are shown in Figs. 6(a) and
(b), and the variation of each #;(¢) with its corresponding
state variable u; (¢) are presented in Figs. 6(c) and (d). It is
clear from Fig. 6(d) that h,, the generalized restoring force
associated with the second mode of the reduced-order model,
exhibits pronounced hysteretic characteristics.

Performing the identification procedure in the manner
indicated in Section 2, the approximate nature of each A4; (¢) is
determined in accordance with the steps given in equations
©)-(15). )

Each of the identified functions 2 (v,,v,) when expressed
in terms of its corresponding state variables defines a surface
covering the v, —v, plane. The approximate surface, as
defined by equation (16), for each of the identified A’s is
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plotted in a three-dimensional form in Fig. 7, which also
shows the three-dimensional representation of the ‘‘exact”
value of A plotted as a function of #, and 8, where §; =cos ™!
v;. The values of the equivalent linear stiffness and equivalent
viscous damping associated with each of the generalized
coordinates #; can be readily ascertained from the three-
dimensional plots of Figs. 7(b) and (d). A comparison of the
time history of the exact and approximate modal 4 is shown in
Fig. 8.

3.5 Validation of Reduced-Order Model. In order to
demonstrate the validity of the present model-order reduction
approach, the model representation expressed by the Cy,
coefficients, which were extracted from the original (‘‘exact’’)
model response under a probing signal consisting of
stationary broad-band excitation, will now be used to predict
the response of the original model when subjected to non-
stationary random excitation consisting of modulated white
noise.

Using the identification results for prediction purposes, by
following the steps indicated in equations (27-29), results in
the response time history shown in Figs. 9-11. It is seen that
satisfactory agreement is obtained between the measured and
predicted response both in amplitude as well as frequency
content. As one would expect, the results shown in Fig. 9
indicate that the least deviation error is achieved in the
primary degrees of freedom (x,, x4, X;) which dominate the
displacement response. Similar comments apply to the higher-
derivative response measures of velocity and acceleration
shown in Figs. 10 and 11, respectively.

Due to the nature of the model-order reduction method
under discussion, in which the generalized nonlinear system
restoring forces are matched by an approximating analytical
expression, good agreement is obtained between the measured
and predicted system acceleration, particularly for the
primary degrees of freedom. In fact, due to the excellent
agreement between the two acceleration curves shown in each
of Figs. 11(a), (d), and (g), one would need to carefully
examine a much more expanded time scale before any
detectable variation between the two curves is discernible.

Further details regarding the identification and validation
of the example reduced-order model are available in [26].

4 Summary and Conclusions

An approximate method is presented for reducing the order
of discrete multidegree-of-freedom dynamic systems that
possess arbitrary nonlinear characteristics. The reduction
method uses conventional condensation techniques for linear
systems together with the nonparametric identification of the
reduced-order model generalized nonlinear restoring forces to
develop a rational procedure for reducing the order of the
class of nonlinear systems under discussion.

The utility of the proposed method is demonstrated by
considering a redundant three-dimensional finite element
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model consisting of 12 nonlinear truss elements half of which
incorporate hysteretic characteristics. This structure, which
has nine DOF, is subjected to stationary wideband random
excitation and subsequently a nonlinear reduced-order model
of three DOF is developed. The original structure is then
subjected to a new nonstationary random excitation and its
measured response is compared to the predictions obtained by
subjecting the reduced-order model to this new excitation. In

Journal of Applied Mechanics

spite of the reduction of the nonlinear model-order by a factor
of 3, satisfactory agreement is obtained in regard to the
deviation error between the predicted and measured response
time history of all degrees of freedom of the original model.
This deviation error is least in the case of the primary
(dominant) DOF. Furthermore, the accuracy of the predicted
accelerations are as good, if not better, than the lower-
derivative response measures.
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The Origin of Stability
Indeterminacy in a Symmetric
Hamiltonian

The stability and bifurcation of periodic motions in a symmetric two-degree-of-
Jreedom Hamiltonian system is studied by a reduction to a two-dimensional action-
angle phase plane, via canonical perturbation theory. The results are used to explain

why linear stability analysis will always be indeterminate for the in-phase mode in a
class of coupled nonlinear oscillators.

1 Introduction

Previous works have shown that canonical perturbation
theory can be used to study the stability of motions of
dynamical systems [3, 4]. In this paper we reduce motion in a
four-dimensional phase space to motion in a two-dimensional
space of transformed ¢‘action-angle’’ variables. We show how
we can use canonical perturbation theory and internal
resonance to derive the equations as well as the first integral
governing the flow of the system in a reduced action-angle
phase plane. This enables us to completely describe the
motion. We show that periodic motions of the original system
correspond to singular points in the phase plane. We study the
motion by investigating the stability of the singular points.

Stability indeterminancy of a singular point (periodic
motion) can occur at a transition from stable (S) to unstable
(U) due to a bifurcation of periodic orbits. However,
sometimes the bifurcation is ‘‘hidden’’ in a higher dimen-
sional parameter space. It is often difficult to find the ap-
propriate embedding of the parameters. In this paper we show
that the appropriate embedding for a certain class of coupled
 nonlinear oscillators is the general three-parameter symmetric
Hamiltonian. This result shows why the linear stability of the
in-phase mode of vibration will a/ways be indeterminate in
this class of systems.

We study a general three-parameter symmetric
Hamiltonian with an even quartic potential and two
generalized coordinates. In Section 2 we show how canonical
perturbation theory can be used to reduce the four-
dimensional phase space to a two-dimensional action-angle
phase plane. The singular points in the action-angle phase
plane correspond to periodic orbits.
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In Section 3 we summarize the phase plane configurations
and show the structure of the bifurcations of the periodic
motions.

In Section 4 we apply our bifurcation analysis of the
general Hamiltonian system. We examine a class of coupled
nonlinear oscillators which have bifurcating nonlinear normal
modes (NNM’s). By treating this one-parameter system as a
subset of a general three-parameter Hamiltonian system, we
are able to explain the linear stability indeterminacy of the in-
phase mode.

2 Internal Resonance and the Action-Angle Phase
Plane
We consider a nonlinear autonomous two-degree-of-

freedom Hamiltonian system S with the symmetric
Hamiltonian
H(x,y,px,py)=H® + HY =h (2.1a)
1 1
H? = 2 (D> +0,)+ 2 (x? +w?y?) (2.10)
H® = ax* + 8x3y +yx2y? + Bxy® + oyt Q.10

Here x and y are the generalized coordinates, p, and p, are the
generalized momenta, o is the ratio of the linearized
frequencies, H™ is a homogeneous polynomial of degree #,
and «, B, and v are arbitrary constants. By symmetric, we
mean that

H®(x,y)= H®(y,x). Q2.1d)
The equations of motion for the system are
. O0H | —-0H .
Xi‘—‘a, Di= ox, i=1,2, (2.2)
We have used the notation
X1 =X, X2=), D\1=Dxs P2=PDy.

The system possesses a first integral corresponding to the
conservation of energy, equation (2.1). We wish.to find an
approximate first integral independent of the Hamiltonian.
We use canonical perturbation theory methods described
previously {3, 4].
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As a first step we transform to action-angle variables ¢;, J;
of the linearized system (H' =0):

x=+v2J; sing,, y=~2J,/w sing, (2.3a)
pe=v2J cosp;, p,=v2wl, cosé,. (2.3b)
The Hamiltonian transforms to
H=H® + A, 2.4)
with
I:I(z) =J1 + 0).]2
H® =4aJ,%sin* ¢,
4B 3 agind g s 2.5
+ (T/ZJI Jz sin ¢l51n¢2 ( . )
4 .
+ llezsin2¢131n2¢2
w
4 4 .
+ Tﬂ/z J, V27,3 2sing, sin’ ¢, + ——92[— J,2sin%¢,.
w w

We next make a near identity canonical transformation fr_om
¢;y J; to ;, I, based on the generating function
S=o\ 1, + ¢y I, + WO (¢, I):

oW oW
Ji=Ii+ YU Vi=oit ——

a¢; al;
We note that J;=0(k) and H® and W¥ are 0(k*). Con-
sequently, y; =¢; +0(h) and W (¢;,I;)= W(A)(‘l’i»li)_ + Q(h3)-
In what follows, we neglect terms of 0(#%). Substitution of
(2.6) into (2.4) gives the new Hamiltonian K.

i=1,2. (2.6)

K(y;,I;) =K® +K®, @.7
KO =] +ol,
and
KD = 5O + LW, 2.8)
where
= 6_ +w 6—
3y, Yy

and A® is given by (2.5) with ¢;,J; transformed to v, ;.

We choose W® so as to remove as many angle terms from
K@ as possible. If w#1,3 (no internal resonance) then all the
angle terms can be removed from K®. The transformed
Hamiltonian (2.7) becomes

2

KI)=I+ol,+ goz(ll2 + I%) +'y{Lé ,w#1,3,
2 w w

We note that since ;, i=1, 2 are ignorable coordinates, I,
and I, are two independent constants of the motion
(neglecting O(h*)); equivalently any linear combination of I,
and I, is an approximate constant of the motion, independent
of the Hamiltonian.

If w=1, 3 then ¢, and y, are not ignorable coordinates.
This is because the right-hand side of (2.8) contains terms of
the form cosnw(y, —¥,) which lie in the null space of the
operator L and hence cannot be removed from K%, We find
that the transformed Hamiltonian (2.7) is either

3
K=I,+L,+ -2-a(112+122)

3
+ Eﬁ\/1112 {1, + I)cos(¥ — ) (2.9

1
+ ‘2‘711120052(¢1 ) +vlil; (0=1)
or

3 1
K=I]+312+ 5&(1]2+'§'122)

400/ Vol. 51, JUNE 1984

Fig.2.1 A nonlinear normal mode (NNM)
B sngin 1
- E‘\Tgll 5L,2cos(By; —y¥y)+ g’Ylez (0=3).
If we define
O=wy — ¥, (2.10)
then the equations of motion (2.2) are transformed to
. — 3K aK . - 3K aK
I, = =—w—, I,= = — (2.11
! W, ©3° T oy, T 19
. . . . 8K
O=wf =y, Y= i=12. 2.11b)
al;
From (2.1) we see that [, + wf, =0, Thus
I, + wl, = constant = # + 0(h?). 2.12)

Use of (2.12) reduces the equations of motion to the form

K . K = 9K

— =F(6,1,), =w———=G(0,])).
gp ~F (01, 0=wgm—op =G(B.1)
Since both XK and K@ are constants, so is there difference.
Thus the integral curves of (2.13) in the § — I, phase plane are
parameterized by the first integral

K®(0,I))=K—K® =constant + 0(h*). 2.14)

To show that the singular points of (2.13) are periodic

motions of the original system given in (2.1) and (2.2) we

require =0, I, =0, and we use the transformations given in

(2.3) and (2.6). At a singular point 7,, I,, 6, and y; are
constants.

(2.13)

jl =w

L=l Ly=Iy—h, 0=w{,—¥, =0, (2.150)

. 0K L
V= 37 (6,1,)=const., wy, =y, =const. ={.

The singular points (6, I) correspond to the periodic
motions

x(t) =~2I,sin[Q, (),
Y (1) =~2(I, — h)sin[Q, (9],
Q-+ 6,

w -

(2.15b)

(2.16)

@)= +0(R); 0y (0) =Q+0(h)).

The singular points (0,1;), (w,I;) correspond to nonlinear
normal modes (NNM’s). In a manner similar to Rosenberg [5]
we define NNM’s to be periodic motions that pass through the
origin 0 and which have two rest points, Fig. 2.1. If §, #0,7
the singular points are periodic motions which are not

Transactions of the ASM‘E
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NNM’s. If w=1 then the singular points (2,1;) are NNM’s
which project onto the x—y plane as the straight lines y=Cx
[called similar normal modes] (SNM’s).

3 Bifurcation Analysis

In the preceding section we showed that singular points in
the action-angle phase plane correspond to periodic motions
of system S. From (2.13) the governing equations for ¢ and I,
are :

. 1
0= (h—21,){('y~3a)+ E'ycosZO

+ %Bh[ll(h—-ll)]“’/zcosf)} (3.1a)
h%
18/y14,
v/2f) G
1 >e

T 2t

0<B/y <%/3, lal<I
LA

1al ¢
G

T 2w
1B8/yl>2/3, 0<ax<]

Fig. 3.1 Sketches of the action-angle phase plane for system S, when
one pair of periodic motions has bifurcated. Periodic motions appear
as stable centers (0) or unstable saddles (X). Arrows show the location
of the bifurcating periodic motions as the bifurcation parameter shown
in the upper right-hand corner decreases. If the sign of the parameter
switches, 0 is translated by 7.

h/21

I, =NI(h=1)) [ % By +2vVI (h—1, )coso] sind (3.15)

[

o

m 2T
0< By <2/3, -1<0<0

y |
“/zg

-

o

h/2

0<B/y <23/3, O<a<i

m 2m
0< By <2/, 0<a<!

Fig. 3.2 Sketches of the action-angle phase plane configurations for
system S when two pairs of periodic motions have bifurcated. Each pair
bifurcates from one of the SNM’s (0, h/2) or (x, hi2). If both the
parameters switch signs the phase portrait shifts by 6 = x.

=0

Table 3.1 Stability and existence of singular points (8,7;) in the action-angle phase plane of system S. Each singular point
corresponds to a periodic motion. The column under stable indicates the parameter ranges for which the singular point is

stable.
Singular point Existence Stable Indeterminate
h 3 2
(0,~2~) Always sgn[,3+('y—2a)]=sgn('y+ —2~B) B/'y=—§ orfi=-—(y—2w
h 3 2
<7r, 5> Always sgn[B—(y—20)] = -sgn('y— 56) B/y= 3 orB=vy-2a
3 h 2
[cos ( -3 B/'y) , 5] 1B/y)< = sgn(y) = —sgn(y—6a)
v#0 3
v=6«
h
{O,E[I:E\/I—AZ]} ~1<A<0
v#2a
f sgn(y— 6a) =sgn(y —2a)
{W,—[I:I:\/I—AZ]} 0<A<l]
2 v#2a

Journal of Applied Mechanics

JUNE 1984, Vol. 51/ 401

Downloaded 02 May 2010 to 171.66.16.25. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



] I I
S e u 2T S S h S S h
S u s h S u 3 h
S ] 2 3 2
S s>
: | A "I R
S /A U S
S ' |
5 | |
|
S U S . .B/ l
£ y b4
-2/3%~ 0 2/3 7 0

Fig. 3.3 Bifurcation of periodic motions for system S. The parameter
B/+vis varied and the parameter A is fixed in the range 141> 1. S =stable;

U=unstable. Fig. 3.6 Bifurcation of SNM’s in system S. The parameter A is varied
and the parameter 8/v is fixed in the range I8/y!>2/3. S=stable;
U=unstable.
B/y B/y
A l
O P L) I L L
- TN h hé h h
2/3—( s Vi i [ o]
~o _ h/2( ....... @-eoe O W FoRvee 2; ) g ¥o) [ & ®
H . Y]
5 s o 7 2n? 9 6 Y
u A<l -l<8<0 0<ax<i <A
04
~. s 1 I 1 =N
——r- -1 0 |
\ Fig. 3.7 Sketches of the action-angle phase plane for system §
0 [ corresponding to the birfurcations of SNM’s shown in Fig. 3.6
ey 8=
2/3 ~ Lt
s —_ i - {
' =0, —1<A<0

3.4

(g,g[u\/l——Z]z), a=_P

Fig. 3.4 Double pitchfork bifurcation for system S. Both “front” and v—2a' f=m 0<A<L]

“rear”’ views of the cylinder with azimuthal angle ¢ and vertical axis 8/y

are shown. The handle of the pitchfork corresponds to the §=0(x), : . : : s : :
Iy =hi2 SNM, and the prongs correspond to the periodic motions Since the vector field is Hamiltonian the singular points are

bifurcating from 6 = 0(x), 8/y = — 2/3 (+ 2/3). S =stable; U = unstable. either stable centers or unstable saddle points. A summary of
the existence and stability of the singular points is shown in
Table 3.1. From equations (3.1) we see that the §—17; phase

[ gl L L portraits will be symmetric about (,/#/2) and that the flow is
h : W h : h invariant under the transformations
O 5 n @ @X’“ ) (%( ........ ® =0+ oy — — o, —y
: =8 : : -0 : > ’
o 7 27 9 9 B——B b—0xr b, (3.5
By <-2/3 -2/3<B/y<0 0<Bfy<2fzs 2/3<Bly t——t
I I I 0B/ Also the following transformations are equivalent:
-2/3 o] 2/3
H A 0—’ 0 +=7 B—> - B oa— —«
Fig. 3.5 Sketches of the action-angle phase plane for the system S (3.6)
corresponding to the bifurcation of periodic motions shown in Figs. 3.3 f——1 f— —t y—— '
and 3.4

We divide the phase portraits into three groups of con-
figurations dependent on the parameters «, 3, and . The
number of singular points (periodic motions) varies from

Requiring that § and I, vanish simultaneously we find the ~ group to group. The first group is defined by

i i r points (6,1,): o
following sets of sxhngula p h( 1) . I [_3 | S % NS 3.7)
[(o,—) and (w,—)]a(g, _) 3.2) _ Y . ‘
2 2 2 In this parameter range, the only two singular points (%,
38 h 8 2 - h/2) are always stable; i.e., there exist two stable periodic
(cos“‘ >k ’_>’ ‘ g |< z (3.3) motions (SNM’s), an in-phase mode and an out-of-phase
2y 2 AL mode. The second group is defined by

402/ Vol.51, JUNE 1984 Transactions of the ASME
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i O,

Fig. 3.8 Sketches of the action-angle phase plane for system S.
Wedges in the «/y plane define regions of admissible #—14 con-
figurations, Moving radiaily inward inside each wedge corresponds to
increasing 8. The -/ coordinates are shown in the upper left-hand

corner.
8 2 diagram shows the stability of the periodic motion 6=
’;’<§’}AI>1' BG-8)  cos-1-3/2 B/v (and I, =h/2) as a function of the
parameter 8/v. For 18/~v1>2/3 the two periodic motions are
or represented by the lines =0, 7. For i8/y1<2/3 two ad-
8 2 ditional stable periodic motions bifurcate from the =0 or =
’ ;, |> 3’ lAl<L. 3.9 periodic motion and the stability of the §=0 or = solution

This group contains both the in-phase and out-of-phase
SNM'’s (¢, h/2) and one additional pair of periodic motions
which bifurcate from one of the SNM’s, If 18/y| < 2/3 the
pair of singular points

(cos“—éﬁ, ]—1)
2~ 2

bifurcates from either (0, #/2) or (=, h/2) depending on the
sign of /v, Fig. 3.1. If 18/y1>2/3 then the pair of singular
points, either

(o, g [1<T= A7) or (w,g[l +JT= A7)

bifurcates depending on the sign of A, Fig. 3.1. The third
group

|§|<%,lAl<l (3.10)
¥ 3

contains six singular points. These are

(23 (=3 03)
2 X €os T3 ToaA
2 272

and either (0, A/2 [l =V1—A2]) or (m, h/2[1£V1—A2] ) ,
Fig. 3.2. :

From Figs. 3.1. and 3.2 we see that B/y and A are the
bifurcation parameters and (%, #/2) are bifurcation points.
The bifurcation diagram for 8/+ is shown in Fig. 3.3. This

Journal of Applied Mechanics

changes from stable to unstable, Fig. 3.3.

Since 6 is 27 periodic the bifurcation diagram in Fig. 3.3 is
really a section on the surface of a cylinder. In Fig. 3.4 we
show the double pitchfork bifurcation on a cylinder with
azimuthal angle # and vertical axis B8/v. One side of the
cylinder has a pitchfork with handle 6=0. The prongs
correspond to the additional periodic motions bifurcating
from =0, B/y= —2/3. The other side of the cylinder has
handle = and prongs originating from ==, §/y= +2/3.
The sequence of phase plane portraits corresponding to this
bifurcation is shown in Fig. 3.5.

We can similarly analyze the bifurcation of the periodic
motions 8 = 0,7 [I; =h/2[1 £~V 1— A?]. The bifurcation pa-
rameter is A, Fig. 3.6. Figure 3.7 shows the corresponding
sequence of phase plane configurations.

For both pairs of bifurcating periodic solutions to be
present, (cos ™' —3/2 8/, h/2) and (&, h/2 [1++V1-A?],
the parameters must satisfy |18/y1<2/3 and |Al<1, Table
3.1. The bifurcation diagram is in four-dimensional (8/, 4,
I, 6) space. As a, B, and vy are varied both bifurcation
parameters /v, and A=pS/y—2« vary and trace out a path
that determines the order of bifurcations.

For example consider 3<0. We vary 8 from — o to 0. The
first bifurcation occurs at the smaller of the two values
B=%(2/3)yor =+ (y—2a). As we vary 3 the phase portrait
configurations are determined by the values of o and v. In
particular the lines y=6c«, y=6/5 o and y =2« are transition
curves in the three-dimensional parameter space («,8,7), Fig.

JUNE 1984, Vol. 517403
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3.8. They divide the space into regions defined by the in-
teraction of the two-dimensional bifurcation surfaces
B/y==x2/3and B/y—2a==*1.

We summarize the sequences of bifurcations in Fig. 3.8.
The #—1, phase plane configurations are plotted in the o —1y
parameter plane. The wedges formed by the curves yv=6q¢,
v=6/5 o, and y=2« define regions of admissible con-
figurations. The configurations for the lower o — v half plane
and for 8 <0 can easily be found from the symmetries listed in
(3.5) and (3.6). ‘

4 Application

In this section we apply our results to a class of coupled
nonlinear oscillators. We consider the system S shown in Fig.
4.1. The Hamiltonian is given by

1
H=T+V= 5 (PE+P2)+V(X%,Y), @.1

where the generalized coordinates x and y are displacements
of the masses from the unstretched spring length. The
potential V' (x,y) comes from the nonlinear spring forces

F=A,6+B,8, i=123 4.2)

where §; is the spring deformation, F, and F; are the forces in
the anchor springs, and F), is the force in the coupling spring.
This puts the potential in the form

X y

Fig. 4.1

The system S’

}

Axr Bix* A,(x—»* B, (x—»)?*
Vixy) = 12 14 2(2 ¥) 2(4 »)
Ayr Byt
+ 24 . .
2 4 “.3)

We can always rotate the x—y axes along modal coordinate
lines to eliminate the x—y coupling in the quadratic terms of
the potential. This is equivalent to requiring that the coupling
spring in Fig. 4.1 be strictly nonlinear. Without loss of
generality we choose

A, =0, A, =1, Aj=u. (4.4)
Substituting of (4.4) into (4.3) puts Vin the form
x*  Bix*  Byx—yp* 'y By
V)= — .
(x,y) 3 + 1 + 2 + > + 2 4.5)

where w is the ratio of the linearized frequencies.
Applying our analysis of symmetric Hamiltonians we
choose (cf.(2.1))

B, =B,. (4.6)
We note that the symmetry of the Hamiltonian means that the
anchor springs in system S are identical, Fig. 4.1. Substitution

of (4.5) and (4.6) into (4.1) puts the Hamiltonian for system S
in the form

w=1,

1 x4
H=> (X +y2+p2+p, )+ (B +B) o —-Byx’y

4

3
+ 2 Byxy? = By + (B +Bz)y7. @.7)

Here B, is the coefficient of the nonlinear anchor spring
forces and B, is the coefficient of the nonlinear coupling

B <0

%, 7 =60(:0) >/
% 4,
» %

Fig. 4.2 Sketches of the action-angle phase plane illustrating stability

.indeterminacy of the in-phase mode in system S’. Circled con-
figurations are those of system S’. The other configurations are for
perturbations off of system $ into system S. The question mark by the
inphase mode indicates a stability transition due to a bifurcation at
B/y= =213,
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Downloaded 02 May 2010 to 171.66.16.25. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



spring force, Comparison with (2.1) reveals that system S is a

member of the class of three-parameter symmetric
Hamiltonians with
a= (B, +B,)/4, B=-1, y=3/2. 4.8)

In Section 3 we showed that bifurcations of periodic motions
occur when 3/y= +2/3 or A=83/y—2a = +1, Table 3.1: In
system S we have -

g_ 2 2B, 2
vy 3 2B, —-B;  2-k’
Since B/y= —2/3, there are only two bifurcation points,
A= =1 (k=0,4). System S has periodic motions

A=

4.9

e

These are the SNM’s, y = Cx, where
—1£vV1-A?
2

When |Al=1 (0 <k =4) there are only two periodic motions,
the SNM’s y= +x. An additional pair of periodic motions
(SNM’s) bifurcate out of the y=-—x mode when
0<A< (k>4) and out of the y=+x mode when -
1<A<0(k<0). The stability of these modes has been
examined in previous works [2, 3]. The authors showed that a
linear stability analysis of the in-phase mode y = +x fails to
predict stability. To predict stability nonlinear terms in the
action-angle phase plane (or in the Poincaré map ap-
proximation [3]) are needed. This nonlinear analysis reveals
that for small energies 4 the in-phase mode is stable for k>0
and unstable for £ <0.

Our analysis of system S summarized in Fig. 38 explains the
linear stability indeterminacy of in-phase mode. For system
S’, B/y= —2/3, cf (4.9). In (a,B,7) space this is a bifurcation
point; two additional periodic motions (8,;) =(cos™! -
3/2(8/7), h/2) bifurcate from the in-phase mode at 8/y= —
2/3, Figs. 3.3, 3.4, Table 3.1. These motions are not NNMS’s.
As the value /v increases past —2/3, the stability of the in-
phase mode changes. In Fig. 4.2, we summarize these results
by plotting the sequences of phase plane configurations for
system S (B/y=2/3) as well as for perturbations away from
B8/y= —2/3. We have circled the configurations of system S’

C=+1,-1, El—%(:h\/k(k—4).

Journal of Applied Mechanics

in Fig. 4.2 to distinguish them from the configurations of the
perturbed system, Fig. 4.2; cf. Fig. 3.9. Linear stability
analysis of the in-phase mode in the system S of coupled
nonlinear oscillators will always be indeterminate because
B/y=—2/3.

5 Conclusion

We have investigated the dynamical structure of a sym-
metric Hamiltonian system S, by reducing the four-
dimensional phase space to a two-dimensional action-angle
phase plane, via canonical perturbation theory. In particular
we investigated the stability and existence of periodic
motions. We found that the system S has two or four or six
periodic motions depending on the values of the parameters
a, B, and «y. If the bifurcating motions enter as S (resp. U)
then the mode from which they bifurcated changes from S
(resp. U) to U (resp. S) upon bifurcation. We have analyzed
the structure of the bifurcations and determined the
dynamical structure of the system as a function of the
parameters.

By embedding a one-parameter class of coupled nonlinear
oscillators in the three parameter «, 3, and vy space, we have
shown that a bifurcation of periodic motions (which are not
NNM’s) from the in-phase mode causes the stability in-
determinacy of the in-phase mode. Our results are valid for
small /4 not only because the perturbation theory requires it
but because KAM theory tells us that chaos will replace the
invariant curves in the phase-plane configurations [1].
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o unbart § Javelin Dynamics With Measured

Department of Mechanical Engineering,

mesvacns, § Lift, Drag, and Pitching Moment

Mem. ASME
Optimal release conditions for the javelin are studied using computer simulation,
H. J. Rust Included are two important and realistic assumptions: (1) initial velocity attainable
r Y by the thrower is dependent on the throwing angle, and (2) the aerodynamic center
Department of Mech G_rad,uEateIStud_ent, of pressure moves as a function of angle of attack. Aerodynamic forces and
epartment of Mec Siglrffzr d'bgrg?\f:rrs,ﬂg’ moments, previously measured in wind tunnel tests, are incorporated in the
Stanford. Calif. 9 430)'5 simulaz_‘ion. Range contours are presented in the two-space of initial angle of at-
Stu dent Mem. ASME tack — initial flight path angle, assuming zero initial angular velocity.
Introduction & T T T =T

Increasingly, computer simulation and the laws of
mechanics have been used to gain understanding of track and
field events. Two papers on the javelin [1, 2] have appeared in
this journal. In an impressive first theoretical and numerical
study of the javelin [1], Soong derived the equations of
motion and studied the effects of various throw parameters
including initial javelin attitude angle 8;, flight path angle 6,
position of the center of pressure d, and wind speed. The
numerical results showed how range, time-of-flight, and entry
angle varied as a function of the preceding parameters.

Although in any study of this sort many engineering
assumptions and approximations must be made, two of 5
Soong’s assumptions seem to have had the largest effects on
his results. These assumptions were that:

20—

15

LIFT AND DRAG (N)

1. the initial velocity attainable by the thrower is independent 0
of throwing angle (the initial javelin speed was held
constant at 30.45 m/s in all calculations), and ANGLE OF ATTACK, a (deg)

2. the lift and drag profiles as functions of angle of attack are Fig. 1(a) Liftand drag forces

given by appropriately resolved theoretical expressions for 0.5 T T T T
friction and pressure drag, and that the pitching moment is
the moment of these two forces acting at the center of
pressure which remains at a fixed distance d from the c.m. 0
even as the angle of attack changes.

Subject to the preceding assumptions, Soong concluded

that: (1) the initial throwing angle is more influential on ~0.5 =
distance than initial javelin attitude, (2) the optimum throw
angle for the NCAA official javelin (d=25.7 cm) was about
43 deg and would decrease to near 35 deg when d=0.8 cm, -10

and (3) shifting the center of pressure to d=0.8 cm could

result in a dramatic increase in range of about 16 m to 106 m.
In reference [2], Red and Zogaib questioned the validity of 15 -

Assumption 1. They presented experimental results from

PITCHING MOMENT (N -m)

— -2.0 1 1 I I

Contributed by the Applied Mechanics Division for publication in the 0 ] 10 20 30 20 50
JOURNAL OF APPLIED MECHANICS. ’

Discussion on this paper should be addressed to the Editorial Department, ANGLE OF ATTACK, a (dog)

ASME, United Engineering Center, 345 East 47th Street, New York, N.Y. . o,
10017, and will be accepted until two months after final publication of the Fig. 1(b) Pitching moment

paper itself in the JOURNAL oF APPLIED MECHANICS. Manuscript received by Fig. 1 Experimental (—) aerodynamic data (V = 30.48 mis) for three
ASME Applied Mechanics Division, August, 1983; final revision, October,  javelins (Held-90 m, Held-70 m, Sandvik Super Elite) and theoretical
1983. approximations (~=~~~ Jusedin [1] and [2]
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110 T 3/1 T T T
”’
I'd
I

’
100 — ~
/

R (m)
8
T

80 —

Flat Throws

10 I | 1 | |
25 30 35 L] 45 50
6; (dog)
Fig. 2 Range versus flight path angle using theoretical aerodynamic

approximations. §; =8y deg but varying initial flight path angle 6; and
velocity Vg =30.48 — 0.127 (9¢ — 35) m/s (corrected Fig. 3 from [2})

three throwers which showed that the attainable initial
velocity decreases significantly with throwing angle. They
then incorporated this dependence into a numerical solution
of the equations of motion similar to that in [1]. Their results
showed that the inability to throw as fast at larger throw
angles implied that: (1) the optimum throw angle remains
about 37 deg for both foregoing values of d, and (2) the in-
crease in range resulting from shifting the center of pressure is
only about 1 m rather than the 16 m predicted in [1].

This. paper summarizes the results of a study whose purpose
was to make a refinement of Assumption 2. Specifically, we
have incorporated experimentally measured aerodynamic
forces and pitching moments into a simulation of the
equations of motion. Our results show that, regardless of
Assumption 1, a set of optimal initial conditions exists that
are significantly different from those suggested in [1] and [2]
and which result in even larger increases in range than
suggested by Soong.

Experimental Forces and Moments

Terauds [31 experimentally investigated 14 different
javelins, including almost all those used at that time in in-
ternational competition. Even though 10 years have passed,
the javelins in use today are not very different from the ones
Terauds tested [4]. Lift, drag, and pitching moment were
measured as functions of angle of attack using constant-
velocity wind tunnel tests. A summary of this data has also
been presented in [S].

Shown in Fig. 1 are the functions for three javelins and the
corresponding theoretical approximations used in {1] and [2].
The experimental lift and drag curves cluster fairly tightly
together, but the pitching moments show more variability
from javelin to javelin. Moreover, the theoretical ap-
proximation is very good for the drag, less good in the case of
lift (about 30 percent high at 20 deg and 15 percent low at 40
deg), and very poor for the pitching moment. When d=0.8
cm, the theoretical pitching moment approximation becomes
essentially zero compared to the experimentally measured
pitching moments.

The aerodynamics behind the rather peculiar shape of the
pitching moment curves (three equilibria, one unstable, and
two stable) is not clearly understood, but the magnitude of the
maximum positive pitching moment is apparently enhanced
by the effect of the grip on the flow [3]. The existence of three
equilibria, of course, is evidence that the c.p. wanders back
and forth, first behind; then in front of, then behind the c.m.
as the angle of attack increases. The practical ramification of
the second stable equilibrium point is that the javelin is able to
generate large amounts of lift (flying at angles of attack of
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from 30 to 35 deg) without generating a restoring moment as
is the case with a fixed c.p. and d#0.

Numerical prediction of the forces and moment would
appear to require a full three-dimensional inviscid solution of
the Navier-Stokes equations along the entire length, a for-
midable problem in itself. In any case, it is not difficult to
believe that the use of the d=0.8 cm theoretical ap-
proximation would lead to unrealistic trajectory predictions.
It is precisely the variable pitching moment that causes the
angular accelerations which are then integrated to obtain the
javelin attitude. Changes in attitude are required to track the
varying direction of the relative wind and to generate lift at
appropriate periods in the trajectory.

Results

We have numerically solved equations of motion similar to
equations (20)-(22), (37), and (38) from [1]. As a test of our
computer program, we attempted to reproduce the results in
Fig. 3 of [1] and Fig. 3 of [2] using theoretical forces and
moments. Although our program predicted essentially the
same results as [1] for constant velocity, we were not able to
reproduce results using variable velocity from [2]. It now
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appears [6] that the curve labeled ““d=0.8 cm’’ in Fig. 3 from
[2] was incorrectly labeled and instead corresponds to d =24.4
cm (0.8 ft). A corrected version of this curve [6] is shown in
Fig. 2. The maximum range of 109.7 m occurs at 6, =30 deg.
The major conclusions are that ranges near 110 m appear
possible as suggested by Soong [1] but that the optimum
initial flight path angle is near 6, =30 deg. _

Next the theoretical lift and drag calculations in the
program were replaced with the measured forces from [3]
discussed in the foregoing, and the appropriate components
of the measured pitching moment were used on the right-hand
sides of equations (37) and (38) from [1]. As the javelin
velocity varied, the forces and moment were scaled by the
dynamic pressure. The results shown here are for the Held-90
Meter, a typical world class javelin in 1972. Its other
parameters were taken from [3]: mass: 809.6 gm, transverse
moment of inertia: 0.4094 Kg-m?, distance - c.m. to tip: 1.080
m. The release height of c.m. was taken to be 2.0 m. Space
limitations prevent a complete discussion of our findings. A
brief summary is given here but a fuller account may be found
in [7] and [8].

Simulations were done for a wide range of initial flight path
angles, 0,, and initial angles of attack oy =8, —#6,. Shown in
Fig. 3 are contours of constant range in this space for the
cases of: (@) constant initial velocity [1], and (b) variable
initial velocity [2]. Also shown on each figure is a single
contour of zero entry angle. Throws to the upper right land tip
first and thus are legal under international rules. Several
points of interest emerge.

In the constant velocity case, the maximum range of 110.64
m is reached with an initial flight path angle 6,=42 deg but
with a large negative initial angle of attack ay= —19 deg.
With an initial velocity that depends on the flight path angle,
the maximum range is limited by flat throws since the zero
entry angle contour lies to the upper right of the 110 m
contour, but still the range decreases by only about 1 m. The
optimal initial conditions, however, in this case are quite
different; 6,=30 deg, o= —14 deg. Of more interest,
perhaps, is that with variable velocity the optimum is less
sensitive, and any point on the line joining the two points
(20,0) and (35,-15) in the (6, o) space results in a range
substantially greater than 105 m. On this line the initial javelin
attitude is constant, 0; = 20 deg.

The velocity dependence experiments similar to those in [2]
have not been done for world class throwers (V> 30 m/s).
We believe that the sensitivity of ¥, to 8, will probably not be
greater than that measured in [2] for lower velocities. For
smaller sensitivities, the optimum will lie somewhere between
those of Figs. 3(a) and 3(b). Thus, a reasonable choice of
initial conditions might be a point on the line connecting the
two optima (cg= —0.420,—1.5) choosing 6, somewhere
nearer 30 deg than 42 deg and o nearer — 14 deg than —19
deg.

408/ Vol. 51, JUNE 1984

We have also generated similar contour plots for the other
two javelins in Fig. 1. Although there are minor differences,
the shapes of the contours are similar to Fig. 2 and the general
nature of the conclusions regarding optimal release conditions
are as previously discussed.

In the case of plane motion, the one initial state that
remains to be specified is the pitch angular velocity 6;. We
must emphasize that a/l results discussed here (and those
Sfrom [1] and [2]) assume §;=0. In [7, 8], we show that the
trajectory and the resulting range are extremely sensitive to
this angular velocity and that this, more than any other
factor, probably accounts for the large variability in actual
performance in the event. Moreover, an additional 4 m in
range may be gained by choosing all three of the variables 9,
o, and ¢; optimally. In this case, the large negative angles of
attack in Figs. 3(@) and 3(b) are no longer optimal because
their effect can be contributed by a negative initial angular
velocity 6;.

Conclusions

1 The optimal release conditions for a given javelin depend
on its particular aerodynamic characteristics. Most javelin
pitching moment profiles are not adequately approximated
using a fixed center of pressure.

2 For world class javelins similar to the Held-90, world
class throwers (¥, =30 m/s), and with zero initial angular
velocity, the optimum initial angle of attack lies somewhere in
the range — 19 <y < — 14 deg. The optimal initial condition
probably lies fairly near the point 8,=32 deg, o= — 15 deg
(6, =17 deg). Almost certainly the optimal throw angle 0, is
considerably lower than 35-37 deg predicted using theoretical
forces and moments and the optimal angle of attack is
significantly different from zero. '

3 Using the preceding optimal initial conditions, a range
greater than 110 m should be possible with velocities (~ 30
m/s), characteristic of present throwers.
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A Parametric Solution to the

G. M. Griner

Science Applications, Inc.
2109 W. Clinton Ave.,
Huntsville, Ala. 35805

Elastic Pole-Vaulting Pole Problem

The fiberglass pole used in pole vaulting is approximated by an *‘elastica’’ having
an applied concentrated force and moment at the upper end. Presented is a

parametric solution expressed in terms of the tabulated elliptic integrals. The results
suggest an advantageous pole-vaulting technique which is not generally recognized
by coaches and athletes. .

Introduction

A detailed analysis of the dynamics of the pole-vault event
in track and field must include the effect of the highly elastic
pole [1]. During the vault the vaulter applies a compressive
load and a bending moment to the upper end of the pole while
the bottom end is free to pivot in the vaulting trough or
“box’’ (Fig. 1). The applied moment is a condition not treated
in the classical literature.

In a previous Note Hubbard [2] proposed an iterative
numerical solution, contending that an analytic solution was
unknown. However, Costello and Healey [3] have solved the
related problem of an end-loaded column subjected to equal
bending moments on each end with a concentrated lateral
force at the column center. Using their method, a parametric
solution to the pole-vault problem can be obtained in terms of
the tabulated elliptic integrals. The solution is presented in
this paper.

Statement of the Problem

Study of the postbuckling behavior of an elastic column
subjected to end loading dates back to Euler (1744). Termed
the ‘‘elastica’’ problem, the classical solution [4, 5] can be
obtained in terms of the elliptic integrals of the first and
second kind, F(p, ®) = [§ (1-p? sin? )" di and E(p, ¢)
= |2 (1—p? sin? ¥ ds.

The elastica problem for the vaulting pole is illustrated in
Fig. 2. The pole is taken to be a thin elastic column of length L
having uniform stiffness B at each location s. (To save weight,
vaulting poles are not always constructed with uniform
stiffness but for analysis purposes that assumption seems
reasonable.) Owing to the small mass of the pole relative to
that of the vaulter, it is taken to be in quasistatic equilibrium
at all times. Thus it is permissible to adopt a coordinate
system attached to the pole ends as shown.

The upper end of the pole is subjected to lateral and
transverse forces (in general not being horizontal and vertical
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directions) and a bending moment. Note that static
equilibrium requires that the applied transverse force, F, be
equal in magnitude to the ground reaction force, F, which in
turn must balance the applied moment, M. Therefore the
condition M= —F [ is imposed for an equilibrium solution to
exist, where / is the chord length of the bent pole. The problem
thus has only two independent parameters.

The Bernoulli-Euler relation for the moment m at location

(x,») is

df
=B— =-P F
m s y+Fx )

where 4 is the local slope of the pole relative to the chord line.
This is seen to be the classical elastica problem with the ad-
ditional term, F x.

Fig. 1

Pole vaulting with a fiberglass pole. Shown valuting 5.40m (17 ft
9in.) is Tadeusz Slusarski, 1976 Olympic Champion. Frame times are in
units of 1/64 seconds. (Composite by author from photographs by R. V.
Ganslen.)
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Fig. 2 Coordinate system for the elastica of length L with applied
bending moment M and compressive load P

Hubbard’s Fictitious Rod

Hubbard [2] argued heuristically that there should be a
fictitious longer pole of the same stiffness loaded only with
end forces, having the same displacements, reaction forces,
and interior moments as the real pole (Fig. 2). This being the
case, the problem would reduce to the classical elastica
solution, with the additional task of determining the unknown
“end’’ of the fictitious pole which will produce the desired
moment at the end of the real pole.

That this interesting conjecture is true can easily be proved
by noting that the differential equation for the fictitious pole
is (1) expressed in an x’y’ coordinate system rotated through
some angle ¢. If ¢ is chosen equal to -arc tan (F/P) then
indeed (1) reduces to the form B df/ds = —P’y’ where the
compressive end load on the fictitious pole is P’ = P cos ¢+
F sin . To achieve a negative moment, M, the pole must
acquire a double lobe bend and ¢ must be negative as shown
in the insert in Fig. 2. Hubbard [2] has described an iterative
technique for solving for Yy and /’.

Observed Behavior

Before becoming emersed in the mathematics it is in-
structive to consider the expected behavior. With the aid of a
plastic ruler one can observe the two cases sketched in Fig. 3.
If a bending moment is applied first and the resulting
deflection is taken to be the positive direction, then the ap-
plication of a compressive end load can only result in ad-
ditional positive deflection as shown in Fig. 3(a). However, if
a buckling load is applied first, the subsequent behavior
depends on the direction of the applied moment. If the
moment tends to further increase the lateral deflection (we
will call this a positive moment) then one simply has case (a)
again. If the opposite (negative) moment is applied the
column tends to ‘‘straighten up”’ and an inflection point will
appear near the top of the column.

Should a large enough negative moment be applied, the
column suddently snaps through to deflect totally in the

direction of the applied moment as illustrated in Fig. 3(b).

Following this ‘‘snap-through’ buckling, the bending

410/ Vol. 51, JUNE 1984

MOMENT MOMENT LOAD LOAD PLUS LOAD PLUS
ONLY PLUS ONLY "“OPPOSING” LARGE
LOAD MOMENT "OPPOSING"
C MOMENT
(a) MOMENT APPLIED FIRST (b} LOAD APPLIED FIRST

Fig. 3 Elastic detflection due to combined end load and bending
moment. Shape can depend on which is applied first.

moment should be regarded as positive because it is then in
the same direction as the lateral deflection.

Phenomena that exhibit sudden jumps with small changes
in a parameter have recently been termed catastrophies [6], a
term which the pole vaulter might find particularly
descriptive.

Solution

To eliminate the dependence on x and y, differentiate (1) to
get

@9 P dy  F P dx
ds® = B ds B B ds
=k?(g cos 0 —sin 6) )

Here we have defined the constants k?=P/B, g=F/P and
used the relationships cos 8 = dx/ds and sin 8 = dy/ds.
Equation (2) can be easily integrated giving
! ( d0>2—k2 in 6+ 0+C) €)]
3 ds =k*(q sin § + cos
where the constant C is evaluated by noting that at x=y=0
the slope § =« but the bending moment (and therefore df/ds)
is zero. From (3) it follows that

C=—gsina—cos o

Substituting this value for C back into (3) and taking the
negative square root gives

do

s = —V2 kVecos 8 — cos o+ g(sin 0 —sin «) 4
The positive root is ignored because df/ds is in fact negative
as Fig. 2 shows.

Now define a constant y such that — g =tan . Substituting

for g in (4) and simplifying gives

vcos 1//% = —k~2 cos(y+8) —2 cos(y) + )

Using the half-angle identity cos z = 1 — 2sin?(z/2) and
rearranging

. 1 i’ + . +0 -
—kcos“\bds:—i[s1n2(¢Ta>—sm2<‘pT)] db
The limits of integration for the left side are from s=0 to
s=L, If B is taken to be the slope of the pole at the upper end
the limits of the right side are from # =« to 6 = 3. The left side,
being a constant, can be integrated immediately.

kL/\/m=Sf % [sinz(‘//%a> —sinZ(wTw)] )

At this point the classic solution introduces the constant p
defined by
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p=sin(¢%x> ©6)

and the new angle variable ¢ defined by

psinézsin(¢—+a)sin<1>=,in<—~¢+0> @)
2 2 v
Taking the differential of (7) gives
+0
pcos ®db=cos (1//2 )—
=1 ——sm2 ‘//+ d? AJ1—p? sin? <I>
Thus
2 ®dd
do= P Ccos . d ®)
V1-p?sin? @
Upon substituting (6), (7), and (8) into (5) one obtains
kL g oy dd ©)
Veosy J¥ v1-p?sin? $
where
1
b, =arcsin[ e sin( m)] =7/2
D 2
and

2

The integral in (9) can be expressed in termes of the dif-
ference between the complete and incomplete elliptic integrals
of the first kind. If one defines a constant K(p, ®,) = F(p,
w/2) — F(p, ®,) equation (9) can be written

k L=~cos yK(p, ¥,)
The left side can be expressed in terms of the Euler buckling
load, P = B =*/L?. Recalling that k*=P/B then
kL=I~NP/B=w~P/Pg. Substituting in the preceding ex-
pression and solving for P/ Py, yields
P cos gl/ 2
10
P, %)) (10)
The side force ratio, F/Pg, can now be found since
F/Pg=(F/P)(P/Pr). Recalling that F/P=-—g= —sin

y/cos ¢ and substituting for P/P; from (10) leads to the
result

b, =arcsin[ % sin( L—I-B)]

F sm \//

Py

A convenient nondimensional form for the applied bending
moment is m/ (L Pg). From (1) we write

&) Q)]

m F x
L P

To evaluate this expression the pole deflection must first be
obtained.

(12)

Pole Shape

The deflection equations which must be solved to determine
the pole shape are

dy= -S04 (13)
Y= "dords
and
cos 6
= 14
db/ds (14)

with df/ds given by (4). The solutions to these equations are

Journal of Applied Mechanics

given in [3]. Expressed in the present notation, the solutions

are
x/L=[2p cos ®sin y—G(p, P)cos y1/K(p, ¥,) (15)
y/L=1{2pcos ®cos y—G(p, ®)sin Y]/ K(p, ®)) (16)
where G(p, ®) = F(p, n/2) — F(p, ® - 2[E(p, ©/2)
— E(P, ®)] and the function E is the elliptic integral of the
second kind. The deflection of the upper end of the pole is
obtained by setting & = &,. The value of the constant v,
which appears in the solution, can be determined by the
condition that the y-deflection of the upper end of the pole

will be zero. Thus (16) gives
2pcos @, cos v+ G (p,

Solving for y gives the result
2p cos ¥, )

g[xzarctan(— G, )

The compressed pole length ratio, //L, is obtained from
(15) by settingx = /and & = &,.

[/L=12pcos &, sin y—G(p, ¥;)cos Y}/ K(p, ®)) (18)

Since, at the upper end of the polem = M, x = l,andy = 0,
equation (12) gives

$,)siny=0

amn

M F i
P, P, L
Upon substituting for //L from (18) and F/Pg from (11) and
using (17) one obtains for the applied moment

M/LPg=[2pcos ®, K(p, ®,)}/n? (20)

The maximum internal moment occurs where d?6/ds* = 0.
Differentiating (1) and solving gives ¢ = tan 6. But, by
definition, tan ¢y = —gq. Thus at the point of maximum
moment § = —y and from (7), & = 0. Evaluating (15) and
(16) at & = 0 gives the point of maximum moment to be

(x/L) = [2p sin ¢~ G(p, O)cos Y]/ K(p, ¥,)
(¥/L) ,y=1[2p cos ¥+ G(p, 0)sin Y]/K(p, ®,)

(19)

@n
(22)

where G(p, 0)=F(p, n/2) — 2E(p, w/2) since F(p, 0) =
E(p, 0) = 0. The expression for the maximum internal
moment is obtained by substituting (10), (11), (21) and (22)
into (12). After simplifying one obtains
(m/L Pg),=—2p K(p, ¢;)/7° (23)
For negative applied moment, M, there will be zero internal
moment at the inflection point, (x;, ¥;). Setting m = 0 in (1)
gives P y; = F x; at this point. But by definition, —tan ¢y = ¢
= F/P = y,;/x;. Substituting for x/L and y/L from (15) and
(16) gives the condition at the inflection point to be
tan y= 2p cos ®cos Y+ G(p, P)sin ¢
anv= 2p cos ®sin Y+ G (p, P) cos ¥

which after simplification yields 2p cos ® = 0. Inflection
points thus may appear at ® = #/2 — nm,n = 0,1,2, ...
One inflection point is at the pole bottom & = &, = «/2, and
for the two-lobe bend shown in Fig. 1, the second inflection

point occurs when & = —7/2.
Evaluating (15) and (16) at & = — «/2 gives the inflection
point location as
(x/L);=-G(p, —n/2)/K(p, ®)) (24)
- (/L) =0 (25)

The pole end angles for the deflected elastica may be found
from equations (6) and (7). Rearranging one finds

a=2arcsinp — ¢
B=2arcsin(p sin ;) -y

(26)
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0o . 0.4 0.6
p
Fig.4 &, as a function of p for parameters P/Pr and M/LPg. Dashed
lines bound statically stable solutions.

Numerical Results

To directly use the present solution one must choose a value
for ¢, and p, solve (17) for ¥, and compute the corresponding
applied load and moment using (10) and (20). Pole shape is
determined by evaluating (15) and (16) over the interval
®, =®=<¢®,. Usually one would prefer to choose values of M,
[, or P rather than the more abstract variables ®, and p. For
this reason Figs. 4 and 5 have been prepared, permitting the
user to determine the values of ®; and p which correspond to
particular values of //L, P/Py, and m/L Pj. The dashed lines
in the figures bound conditions which result in physically
stable pole deflections. A pole shape is said to be unstable if
dl/3®, + 4l/dp > 0. Thus the boundary is at d//dM = 0 for
constant P or at d//dP = 0 for constant M. Together, Figs. 4
and 5 illustrate many of the interesting features of the
solution, some of which are now called to the reader’s at-
tention.

For the case of zero applied moment the results should
coincide with the classical elastica solution. When M = 0 the
side force, F, is evidently zero and we have g= =0, The pole
will deflect symmetrically (a= —§) so using (6) and (7) p =
sin(a/2) and ®; = — /2. Then, using the identities E(p, —

n/2y= -E(p, n/2) and F(p, —n/2)= — F(p, ©/2), equations

(10) and (15) give the simple result P/Pg=[2F(p, #/2)/x]?

412/ Vol. 51, JUNE 1984
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Chord ratio /L corresponding to &4 for parameters P/Pg and
M/LPg. Dashed lines bound statically stable solutions,
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Fig. 6 Elastica shape resulting from {a) pure compressive load or (b)
pure bending moment

and I/L = 2E(p, n/2)/F(p, w/2)— 1. These are indeed the
classical results and may be found in Fig. 5 where the P/Pg-
curves intersect the abscissa. Restricting //L to positive values
implies that 2E(p, 7/1) =F(p, #/2) which is true if p <
0.909. Thus the extreme values of the end angles when //L =0
is 2 arcsin(0.909) = 130.7 deg. Typical pole shapes resulting
from zero moment and increasing compressive load are
illustrated in Fig. 6(a).
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In Fig. 5 it can be seen that there is a maximum moment
which can be applied for any given P/Pj. For the special case
of P = 0 the pole deflection is entirely the result of the applied
moment. When P=0 we have g— o and y = x/2. Setting «=0
in (6) and (7) gives the values of p and ®, for which deflection
just begins. Whence, p=sin[(w/2+ a)/2]=sin(n/4)=0.707
and &, =7/2 as can be seen in Fig. 4. For P/Pr=0 the
maximum moment, found numerically from (20), is
M/LPg=0.5354 at p=0.9550, ®; = ~0.5092. From (18) the
chord ratio is //L =0.5263 with end angles o=55.5 deg and
8= —145.5 deg given by (26). Some pole shapes resulting
from increasing positive moments are illustrated in Fig. 6(b).

The expected snap-through buckling from applied negative
moment is evident in Fig. 5. As an example of this behavior
consider the case of end load P/P;=1.3 with zero applied
moment. The initial chord ratio will be //L =0.55. Now let an
increasingly negative M/L Pp be applied. Following the
P/Pp=1.3 curve shows the chord length progressively in-
creasing until the stability boundary is encountered at
//L=0.84 when M/L Pz = —0.081. For any further increase
in the negative moment either the chord force must be in-
creased or the physical pole will rapidly straighten to //L =1
and, due to the applied moment, deflect totally in the opposite
direction. By convention the applied moment would then be
taken as positive. At M/L Pr=0.081 for P/P;=1.3 the new
stable condition is seen to be at //L=0.415. The progression
of pole shapes for this example is illustrated in Fig. 7.

If, instead of a constant value of P/Pj, the pole ends are
constrained so as to hold the chord length constant, then a
much larger negative moment is required to produce snap-
through buckling. In the pole vault this could conceivably
occur if a very large negative moment was suddenly applied by
the vaulter because the pole would require a finite amount of
time to lengthen. Snap-through buckling at constant length
occurs when the maximum internal moment given by (12)
increases without bound as the applied bending moment is
increased; that is when dm/dM=co. The p, $; pairs which
satisfy this condition for specific values of //L have been
determined numerically and are plotted in Fig. 5 and listed in
Table 1. Figure 8 shows typical pole shapes at the snap-
through condition for fixed values of //L.
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0.8 OS
0.6 0.6
X X
L L
0.4 0.4
0.2 0.2
0 ,
0.2 0.4 0.2
Y/L Y/L
w Ao e M-
A o 0 LPE 0.081

-0.4

A very unexpected result occurs for negative moments if
P/Pr > 1.8368 (this value has been determined numerically).
Stable solutions exist in two small disjoint regions of the p, &,
plane. This means that for moments larger (more negative)
than M/L P, = —0.2215 to be permissable the value of
P/Pp and M/L Pz must be simultaneously varied such that
their trajectory in Fig. 5 remains in the stable region. This
could be accomplished by constraining the ends to the desired
//L value, applying the proper moment and end load, and
then removing the constraints. If this were done correctly, the
maximum negative moment that could be applied is computed
to be M/L P = —0.4094 at P/P;=1.93 for p=0.6850,
$, = ~2.2729 with a chord ratio //L=0.475. Figure 9
illustrates the pole shapes that are attainable (and those that
are not) when P/P, = 1.85.

Hubbard’s End

The fictitious pole end which Hubbard finds by a numerical
search can now be determined. Let /’ be the chord length of
the fictitious rod whose total length is L’. For an applied
positive moment, Fig. 1 shows that /" =2(x,, cos ¢ —y,, sin ).
Substituting from (21) and (22) gives /'/L=2[2E(p, w/2) —
F(p, #/2)]/K(p, ®,). Since the fictitious rod has only
compressive end force, P’, the classical result is also true,
namely ['/L' =2 E(p, w/2)/F(p, n/2) — 1. Using these two
expressions the ratio of the fictitious pole length to the real
pole length can be determined. The result is

L'/L=2F(p,n/2)/K(p,®,) 27)

A similar calculation yields the pole end for applied

negative moment. The insert in Fig. 1 shows that for this case,

I”=2vx?+y?. Substituting from (24) and (25) gives

I'"/L=2G(p, —=/2)/K(p, ®,). Again using the classical
result for // /L’ gives the fictitious-to-real length ratio to be

L'/L=4F(p,7/2)/K (p,®,) (28)

which is just twice the result for a positive applied moment.

In both cases the end load which must be applied to
Hubbard’s rod is P’ = P cos ¢ — Fsin . Substituting from
(10) and (11) gives

P'/Pp=[K(p,®))/]*

1.0 1.0
0.8 0.8
0.6 0.6
X X
L L
J 0.4
0.2 D
o 0
0.2 0.4 0.2
L YL
@ M. o L.
O g5, - 0.081 P - 0163

Fig. 7 Elastica shapes resulting from a compressive load of P/Pg =

1.3 and increasing clockwise bending moment. At M/LPg =

—0.081

the elastica suddenly reverses its y-direction of deflection.

Table1 Snap-through buckling conditions at constant length

i/L M/LPg p $, (rad)
0.95 ~0.2353 0.2382 ~3.3922
0.90 —0.3366 0.3358 —3.3888
0.80 —0.4876 0.4716 —3.3840
0.70 ~0.6137 0.5735 ~3.3772
0.60 -0.7311 0.6576 —3.3681
0.50 ~0.8484 0.7305 —3.3565

Journal of Applied Mechanics

Yo(rad) P/Pg o(deg) B(deg)
-0.0967 2.5538 33.1 123
—0.1423 2.6106 47.4 17.6
~0.2195 27321 68.9 25.6
-0.2978 2.8559 87.1 32.5
-0.3892 2.9709 104.5 39.3
—0.5082 3.0466 123.0 41.0
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y/L

Fig. 8 Typical elastica shapes just prior to fixed-length snap-through
buckiing

Since the Euler buckling load for the fictitious pole is Py’ =
P (L/L)? wehave

P /Py’ =[K(p,®)L" /7 L]?
Application to Vaulting Technique

These results should come as good news to pole vaulters
since they desire a ‘‘soft”’ (e.g., flexible) pole at takeoff but a
‘‘fast response’’ (e.g., stiff) pole during the last half of the
vault. Contemporary vaulters place their hands about 3/4 m
apart on the pole. Then by keeping their bottom arm
somewhat stiff at takeoff a positive moment is naturally
applied. This bending moment reduces the compressive end
load necessary to buckle the pole. To the vaulter the takeoff
shock is reduced much like it would be on a more flexible

pole. Once maximum defléction has been achieved (Fig. 1, -

frame 19) the vaulter would benefit from a powerful

414/Vol. 51, JUNE 1984

CASE p ¢1 M/LPp
0.7 1 A 0.6071 -2.2902 -0.3552
B 0.6900 -2.1488 -0.3387
¢ 0.7733 -1.9952 -0.2928
0.6 + D 0.8280 -1.7831 -0.1585
£ 0.8900 -1.5173 0.0421
0.5+
0.4
0.3 4
X
L
0.2 4+
0.14
04
-0.1 +
0 0.1 0.2 0.3 0.4
0.2l Y/L

Fig. 9 Elastica shapes resulting from a compressive load of P/Pg =
1.85 and several clockwise bending moments. The shaded region
between class C and D contains unstable shapes.

straightening of the pole such as would occur if it were
suddenly much stiffer. Apparently this can be accomplished
by applying a negative moment at this time.

At maximum deflection the vaulter begins to invert his
body position so as to approach the crossbar feet first.
Beginners are instructed to invert by swinging up about their
hand grip. More advanced vaulters are told to ““rock back’’
while tucking the knees. The present results suggest that in-
verting by applying a large negative moment to the pole
should be taught. (For the right-handed vaulter in Fig. 1, push
with the right arm, pull with the left.) Such an applied
moment would cause the pole to straighten as though it were
stiffer. If the athlete were strong enough to accomplish this
with legs extended instead of tucked, a maximum negative
moment would result. Hubbard [1] estimates the maximum
bending moment that a vaulter might apply. Using his
estimate and assuming it could also be applied in the negative
sence gives M/L P; = —0.051. Thus the danger of causing
snap-through buckling rather than rapid pole straightening
seems remote indeed.

Analysis of photographs of World Class pole vaulters
suggests that the negative moment may in fact be applied by
some. However this aspect of pole-vaulting technique is not
generally recognized.
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gyroelastic continuum. Gyroelastic vibration modes are derived and used as basis
Sunctions in terms of which the general motion can be expressed. A discretized
approximation is also developed using the method of Rayleigh-Ritz. The paper

concludes with a numerical example of gyroelastic modes.

1 Introduction

Having in mind the dynamics of flexible structures, let us
consider the following four types of mechanical influences:

(a) inertial (mass) influences;

(b) dissipative (damping) influences;

(c) stiffness (elastic) influences; and

(d) gyroscopic (herein called ‘‘gyric’’) influences.

The first three are familiar in both their ‘‘distributed
parameter’’ and their ‘‘lumped parameter’”’ guises—the
mechanical properties of inertia, dissipation, and stiffness are
routinely formulated using either continuum dynamical
models or spatially discretized dynamical models. Gyric
influences, in contrast, have heretofore been formulated
exclusively in terms of lumped-parameter models. The
purpose of this paper is to examine, for the first time,! the
dynamics of a gyroelastic continuum.

A partial exception to the foregoing claim might be said to
occur when an elastic structure is spinning —a flexible
spacecraft, for example [2]. In such cases the equations of
motion are most conveniently written using coordinates that
measure displacements with respect to an appropriately
spinning reference frame (see, for example, Hablani’s work
[3D). With respect to such a frame, the Coriolis force
distribution produces terms that are indeed both distributed
and gyric in nature. However, for spinning flexible bodies the
distribution of gyric forces is not independent of the mass
distribution, whereas, in this paper, we analyze a nonspinning
elastic continuum that has a separately specified distribution
of gyricity.?

It is not difficult to understand why gyricity has
traditionally been treated using local, lumped, finite sources.
These sources have, in applications, simply been spinning

! Some of these ideas were first presented informally in reference [1].
2 This word is coined because there is no synonym.
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wheels (rotors). Thus, while one may, for example, conceive
with equal ease of a finite lump of mass, m, or an element of
mass, dm, one does not encounter, in the technical literature,
an ‘‘element of gyricity,”’ dh; or an ‘‘element of rotor.”” Yet
it is precisely this idea that is introduced in this paper.

A simple example of lumped gyricity is depicted in Fig.
1(@). A rigid body ®, which contains a rotor ‘W, is attached to
a rigid support at O via a pin-joint about which two degrees of
rotational freedom are possible: §, and 6,. Two rotational
springs at O have stiffnesses k&, and k,. The moments of
inertia of ® + “W about the 1 and 2 axes (assumed to be
principal axes) are J; and J,, and the angular momentum of
W relative to ® is A, assumed constant. The equations of
motion, namely,

J19.|+h0.2+k101=0 (1.1)
Jzéz""héz'i‘kzez:o (1.2)

imply the following characteristic equation for the natural
frequencies of (small) oscillation:

J,sz4—(J1k2+J2k1+h2)w2+klk2=0 (1.3)
Denoting the roots by (w2, w,2), we note that
wlwy?=whwi Vh (1.4)

where (w3,, w?,) are the values of (w?, @3) evaluated at £=0:
wy=k;/J; (i=1, 2). Thus the wheel does not add any
“‘stiffness’’ (as is sometimes claimed); although w, can be
raised by increasing #, w,; is correspondingly lowered. This
can be seen graphically in Fig. 1(b), where the two system
frequencies are plotted for a special case {J, =J,=J; k, =k,
=k; wo =wy =wi=k/J}. The roots of (1.3) under these
assumptions are

W =wd {1+ Vah* £ ViR (h* +4)") 1.5)
where £ is the dimensionless wheel speed,
h8h/ (kD" (1.6)

As indicated by Fig. 1(b) and (1.5), the two frequencies tend
to split with increasing A:
(1.7)

This again indicates that some frequencies are raised, and
others lowered, by gyric effects. A study of the eigenvectors

O)]"O)O/h, wz_’th as h—o

JUNE 1984, Vol. 517415
t© %‘% 4 b

r Cop¥r®hstl;vls%e http://www.asme.org/terms/Terms_Use.cfm



Fig.1(a) Physical model

5
w /
W, ‘ /
41 | //
| //
w,/w,
3r “ /<w/<u =h
/
\\ g
2r g h 2_ k.
\ S A
\//
I w, /W
LI w/w, = 1/h
v ~=e
1 1 13 1 ﬁ .
0] | 2 3 4 5
h

Fig. 1(b) Natural frequencies
Fig. 1

shows that the low-frequency mode is a precession of the tip
of 81 with a sense opposite to that of the wheel momentum # .
Similarly, the high-frequency mode is a precession with the
same sense as h .

In the remainder of this paper, these elementary ideas will
be substantially generalized so that they apply to a gyric-
elastic continuum.

2 An Elastic Continuum

Prior to a consideration of a continuous distribution of
gyricity, we first discuss the continuous elastic body & shown
in Fig. 2. & is constrained not to translate or rotate at 0 (the
cantilever conditions). If & were under the influence of a static
distribution of external force per unit volume, f (r), this would
cause a static distribution of elastic displacements, u(r). In
this paper we assume geometric linearity:

la /1l < <1 2.1

We also assume a linear constitutive law for &, i.e., stress is

proportional to stain.
Under these assumptions, u bears the following type of
relationship to f: :
Ku=f

where X is a linear differential stiffness operator. All

416/ Vol. 51, JUNE 1984

2.2).

Tt

éf undeformed

Cantilevered at O

Fig. 2

boundary conditions, including the constraints at 0, are
implied in the symbol ¥. Moreover, X is self-adjoint,

Sg u,T(Ij’,ude=S8 u Xu,dV, (2.3)
and positive-definite,
Sa u"XudV>0 for u=0. 2.4
These properties of ¥ must be true because
U= 1/zS8 u’ KudV 2.5)

is the expression for the stored elastic strain energy.

In preparation for the introduction of a distribution of
gyricity in the next section, we remark that it is possible to
make a torque distribution g(r) and a force distribution f(r)
equivalent in the sense that both produce the same
distribution of displacements. Thus, given g(r), we seek to
find the equivalent f(r).

The derivation is facilitated by thinking of f(r) as a
superposition of dipole forces (none of which contributes a
net force over the vehicle):

(0= |, farpav
We intend to show that the dipole-force distribution f, that is
equivalent to g is given by

f£4(r,8)="2g"(§)V ;5(£—71) @7

Now, £, is said to be equivalent to g if the following condition
holds:

(2.6)

|, c-rtampav=g @9

Therefore, substitute (2.7) into (2.8), and note that

|, r-ow@voE-nay

=|, -vrivesc-nrewar
But from the properties of the é function,

(E-n'[Vo(E-D]*=26(§-01

This completes the proof.
We conclude from (2.6) and 2.7) that the force distribution
f equivalent to g is

t0)=1{ g @V E-nar (e @.9)
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Fig. 3

In fact, this integration can be performed with the aid of
Gauss’ Theorem, which states that

Sg T v ydV= SG VIV XodV + Sag yTerdS  (2.10)

where the last term is a surface integral over the boundary of
&. Applying Gauss’ Theorem to (2.9) shows that

f(r) =2 v*g(r) .11)

which is the result sought. It has also been assumed that g=0
on the boundary 9§&.

3 The Gyricity Distribution, /(1)

The idea of a continuous distribution of stored angular
momentum, or gyricity, hg(r), is a central theme of this
paper. We now introduce a gyricity distribution to the elastic
body & discussed in the last section. At the same time, we
must allow & to undergo dynamic displacements u(r, ¢) in
response to dynamic inputs.

The element of volume dV has mass dm, where

dm=o(r)dV 3.1

o(r) being the mass density in & at r. The ‘“‘inertial’’ force
distribution is thus

f; (r,0)= — o(r)ii(r,?) (3.2)

There may also be an externally-generated force field, f, (r,

1), and an externally-generated force field,

g. (r,1), corresponding to which we define the equivalent total
external force field

feT(ryt) éfe (l‘,t) +% nge (l‘,f)
in accordance with equation (2.11).
We now treat the dynamical influence of the gyricity

distribution h, (r) as equivalent to yet another distribution of
external force. To do so naturally requires a precise un-

(3.3)

Journal of Applied Mechanics

derstanding of what the symbol hg(r) means. As shown in
Fig. 3(a), we associate with the volume element dV a ‘‘stored’’
angular momentum h,dV that exists over and above the
angular momentum attributable to dm from its nominal
velocity distribution, namely, v(r,/)=u(r,f). A physical
analogy (Fig. 3(b)) is a volume element that contains, in
addition to its elastic material, an infinitesimal wheel whose
angular momentum, relative to the rest of the volume
element, is h,dV. Thus, although the mass of this elemental
wheel is included in dm, the absolute angular momentum of
dV (about O, say) exceeds r*u dm by the amount h,dV. One
might picture, for example, an elastic frame structure, each
facet of which houses a rigid gyro. As the number of facets
(and gyros) becomes infinite, and the size of each facet
shrinks to zero, the limit is a continuum of gyricity.

Although it is not essential to do so, we will assume in this
paper that h,(r) does not vary with time. This is a
generalization of what Roberson [4] called ‘Kelvin’s
gyrostat.”’

As a final point, the kinetic energy associated with the
volume element dV is of the form

dT=%uTadm+h! (1~ YeaX)adV+ T, (r)dV 3.4

where afr) is the rotational displacement at r due to elasticity,
and 7, and h, imply an axial inertia I; and spin rate w, for the
fictitious elemental wheel shown in Fig. 3:

hy (r) = I (r)ws (r)s(r) (3.5)
T, ()= (r)w} (1) (3.6)

where s is simply a unit vector giving the direction of h,. Thus
we have

I (ry=Yah2/T, (3.7
ws (1) =2T,/h; (3.8)

The concept of gyricity becomes especially attractive in the
limit as I, —0 and w; — oo, in such a manner that s = I w,; goes
to a nonzero noninfinite value. This limiting procedure does
have the rather unpleasant consequence that 7,—oo, but
fortunately T, depends on neither u, u, nor ¢, and therefore it
does not affect the dynamics.

4 Equation of Motion

Even though h; will in applications often be stored within
&, the gyric reaction torques can be treated as ‘‘external’’ to
the rest of the structure. We denote by a(r) the local angular
displacement of &, at r, with respect to the reference at-
tachment frame. According to Timoshenko and Goodier [5],

a(r) = 2 vV u(r) 4.1)
Then, since a torque &*h,dV must exist on the element of
gyricity h,dV in order to produce the rotation rate &, the

equal and opposite torque it impresses on the surrounding
structure must be (per unit volume)

g, (,H)=h*a=Y2h* v**u 4.2)
The equivalent force distribution, according to (2.11), is
£ (r,)=—-Gu “4.3)
where the operator 9~ is defined thus?
g=-YV*hiv* 4.4

.(Note that the first vV operates on all the factors that follow
it.
' 2l“he final equation of motion for & is, therefore, from (2.2),
Ku@r,t)=f; (r,0) +f, (r,0) + £, (r,8) 4.5)
with f;, f,, and f,; given, respectively, by (3.2), (4.3), and
(3.3). Theresult is
M + 81i+ Ku=f,r 4.6)
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where the mass operator 9 is simply
MAa(r)L @.7)

and 1 is the identity operator. Obviously, M is self-adjoint
and positive-definite. Note also from (4.4) that G is skew-
Hermitian. -

The total kinetic energy of the system is calculated from
(3.4): ’

T=‘/zS8 (liT’:’I_l”Lli+|iT$u+liTV"hs)dV+Es (4.8)

Here the relations (4.1), (4.4), and (4.7) have been used, along
with Gauss’ Theorem in the form (2.11), and E; is the
dynamically unimportant term
E,= SS T, (r)dV 4.9)

We combine T with the potential energy, given by (2.5), and
with the appropriate expression for virtual work done by the
external force field, namely,

6W‘*=Sa (f75u+ gl da)dV = SS fT-6udV 4.10)
[The identity in (4.10) can be proven using the expression (4.1)
for e, then applying Gauss’ Theorem (2.10) with g, =0 on 3§,
and finally using the definition (3.3).] It can be shown that the
motion equation (4.6) is also derivable by applying the
calculus of variations to Hamilton’s (extended) principle, and
using the foregoing expressions for kinetic energy, potential
energy, and virtual work.

5 First-Order Form

To derive many of the following relationships, it is helpful
to cast (4.6) into an equivalent first-order operator form,

Ex+8x=v (5.1
where
Mmoo g X

gd | o x|;ss [=x e 5.2)

u f.r
x4 [ } ; v4 [ } (5.3)

u ]
(Dots imply the null operator.) It can be shown that § is a

Hermitian (or self-adjoint) operator, and that § is skew-
Hemitian:

[, xrexav=| exyixaav 64

[, disxav=={_(sxyxav 5.5
where x, (r) and x,(r) are any two functions in the domain of
&, and x denotes the Hermitian (complex-conjugate trans-
pose) of x. The Hermitian operation is needed in (5.4) and
(5.5) because the gyroelastic mode shapes (defined and
derived in the next section) are complex. Furthermore, the
positive-definiteness of M and X implies that § is positive-
definite also:

Sa XAExdV>0 (x#0) (5.6)

For completeness, we note that the system Hamiltonian is

H= 1/258 (W7 M + u” Kw)dV — E,
=1 SS x"&xdV—E, (5.7)

418/ Vol. 51, JUNE 1984

The Hamiltonian evolves as power is expended on the system
from external sources:

H= Sa W't dV (5.8)

If there are no external influences, H is conserved (H is
constant).

6 Gyroelastic Vibration Modes

The ecigenvalue problem associated with (5.1) arises
naturally when one considers the unforced motion (f,7=0)
and sets

x(r,0) = Re x, (Dexp(A, 1)) 6.1)
The general (free) motion will be a superposition of such
solutions, where
A &Xo+ 83X =0 6.2)
It can be demonstrated that the eigenvalues A, appear in
complex conjugate, purely imaginary pairs:
(6.3a)
It will be convenient in the sequel to restrict w, to positive

values only, and to restrict « to positive integers. With this
convention, equation (6.3a) becomes

Ao =j0q

(6.3)

The corresponding convention for the complex eigenfunctions
X i8 this:

)\:ha = :*:jwu

Xsa (1) =0, ()£, (r) (6.4)

Note that two real functions, ¢, and y,, are associated with
each natural frequency w,,.

With' the foregoing symbols and conventions, (6.2)
becomes, in real terms,
wu§¢a+§¢a=01 _wa§¢a+§¢u=0 (6'5)
It follows that
(W 2E+8E7'8)9, =0 (6.6)

and similarly for y,. (§ ! exists because § is positive-
definite.) Note that §§~'§ is Hermitian. Using standard
procedures we conclude that

SS ¢§§¢ﬁdV=O (wa;éwﬁ) (67(1)

and similarly for the y,. The normality conditions we choose
(for reasons to be seen presently) are

|, o180,av=202= y7ev.av 6.78)
In summary, the conditions
[, sreopav=2etp,=| vrgwav  ©

represent succinctly the orthonormality conditions.

The six-tuples ¢, and ¥, are convenient for derivations (as
in the foregoing) but of more direct physical significance are
the three-tuples that give physical displacements. Thus, from
(6.1),

(6.8)
(6.9)

where u,, and vo,‘ are, respectively, the ‘“bottom halves” of ¢,
and y,,. In fact, since u must, from (6.9), be given by

X (r,0) = ¢, (r)coswa! — ¥, (r)sinw, ¢
w(r, ) =u, (r)cosw, ! — v, (r)sinw,?

u(r, ) = — w,[u, (r)sine, £+ v, (r)cosw, 6.10)

it can be concluded from the definition of x, namely (5.3a),
that
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WV [ Wylly
b6 = i Va= | (6.11)

u, L v

The function-pairs {u,, v,} will be called the gyroelastic
mode shapes.

The orthonormality conditions (6.7) can be rewritten for
the gyroelastic mode shapes, using (5.2¢) and (6.11):

Ss ulKugzdV+ w“wﬁSg vIvedm=2w2d g

SS v‘fQCvﬁdV+wuwBSS ulugdm=2wks 4 6.12)
Another relationship of a similar nature can be uncovered by
first recognizing (6.5) and (6.7), and subsequently taking
advantage of (5.2b), (6.11) and (6.12):

w“Sa ulugdm+ wﬁSa vivedm

- Sa vgguﬁdm =20,8,g 6.13)
It is amply evident that the gyroelastic modal pair {u,, v,}
must be considered as a duo.

It will no doubt help the reader to pause momentarily and
reduce the foregoing conditions to those for the more familiar
context of a purely elastic (nongyric) continuum. From
h; (r)=0 it follows that §=0. Furthermore, we denote the
modal pairs {u,, v, ) by {itg,, Vo, }. It can be shown from the
relations (5.2), (6.5), and (6.11) that

(h;=0):
for all modes. In fact,
(h,;=0): (6.15)

and similarly for vy,. The orthonormality conditions (6.12)
and (6.13) reduce to the familiar conditions

Voo =Wy (6' 14)

.2
Ky, = wi, Mug,

Sa uf updm=24.4
(h,=0): (6.16)
SS ugu J...cuOGdV= w%aaaﬁ

It is for this reason that the normality factor 2w2 was chosen
in (6.7b).

7 General Motion -

The general motion of & with distributed gyricity, in
response to the external stimulus f,7(r,7), can be expressed

Journal of Applied Mechanics

using the gyroelastic modes of the last section. Once again the
most direct derivation is in terms of the six-tuples ¢, and .
Let the solution to (5.1) be

X0 =Y (65 (D45 (8) + 95 (1,5 ()]
g=1

(The reason for the notation 1,4 and 5,5 will become apparent
presently.) Then, after substitution of (7.1) in (5.1) and in-
vocation of the orthonormality conditions, it can be shown [6]
that

7.1

, 1 , ,
Nue = PaMoae = — E Yoar  TMva T 0o Nyq = 270(' Yua (7.2)
where
Yua égs “ZferV; Yoo éSS vzferV (73)

Notice the coupling between the {1,4, 7., } Dairs.

The time history of the elastic displacement u(r, #), in terms
of gyroelastic modes, is then found from (5.3a), (6.11), and
(7.1):

(0= Y5 g (01,5 (1) +¥5 (D145 (1)) (7.4)
8=1
where 7,4 and 7,5 are determined from (7.2) and (7.3) in the
foregoing. (The rationale for the symbols 7,5 and 73,5 is now
clear.)

To again make the connection with the familiar for-
mulation for a nongyric elastic continuum, we note from (7.3)
and (6.14) that

0,20 ve=vre=r0 8] whigav 09
Then with
Mo R+ Mo (7.6)
it follows from (7.2) that
ﬁOa + w(%aﬂch =Y0a (7'7)

which is the standard result for a (nongyric) elastic con-
tinuum).

8 Motion Equation for Diseretized System

The last general result we present relates to the con-
centration between the dynamics of a continuous distribution
of gyroelasticity and the motion equations for the discretized
approximation for such a system. It will be seen that the set of
ordinary differential equations for the discretized version are
of standard form.

Preparatory to employing the Rayleigh-Ritz method, we
represent the displacement u(r, #) as an expansion in terms of
a finite (although possibly large) number of displacement
functions, 8, (r), n=1, 2, . ., N. With each such admissible
basis function, we associate a coordinate g, (¢) . Thus

N
u(r,)= ) 5, (g, (1) =AMa() (8.1
n=1

where

AMALS, .. . oy (8.2)

and q is a column matrix made up of the g,. To use the

Rayleigh-Ritz method, recollections of the kinetic energy,

potential (elastic strain) energy, and virtual work are in order.

These important quantities are given, respectively, by (4.8),

(2.5), and (4.10). Using the foregoing expansion for u(r, ?), it
becomes evident that

T=%(q" M4+ q7Gq+ TR+ E;

U=1%qTXq

(8.3)
(8.4)
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SW, ={16q (8.5)
where the definitions

imésa ATAdm (8.6)
géjg ATGAdV 8.7)
aégg ATV h,dV (8.8)
x égg AT AV (8.9)
forl= SS AT, dV (8.10)

have been introduced. The definitions (8.6), (8.9), and (8.10)
are, of course, textbook material. The definitions (8.7) and
(8.8), on the other hand, are novel to this paper.

Hamilton’s (extended) principle is

] 1]
65 Ldt+S, SW,dt=0 (8.11)
1

1
where L=T-U is the Lagrangian. Using this principle in
conjunction with the previous energy and work expressions
produces the following matrix equation of motion:

MG+ GG+ Kq={fr (8.12)
MT=M>0; GT=-G; XK'=K>0 (8.13)

This form of motion equation is familiar in other contexts,
including nonspinning elastic bodies with finite wheels, and
spinning elastic bodies. One of the main contributions of this

paper is to show how to evaluate the matrix G for a -

distributed, continuous gyricity.

420/ Vol. 51, JUNE 1984

The object of this section has been to make the connection
between the continuum representation of this paper, as
represented by equation (4.6), and the familiar discrete-
coordinate version of (8.12) in the foregoing. The latter has a
quite extensive literature; see, for example, Huseyin [7].

9 v Numerical Example

Let us now apply some of the results of the preceding
sections to the example of a slender cantilevered rod with the
sense of gyricity parallel to it (Fig. 4). The rod is assumed to
have a constant linear mass density p and constant bending
stiffnesses B, and B,. It is sufficient to treat this problem in
only two dimensions. Thus u(x) =[u,(x), u,(x)]7 and the
stiffness and gyric operators take the special forms

B, = a*
K= —_— 9.1
- s B, dx* ©-1

g=-Vh,¥ 9.2)
where
e 1 e ]
v A [ }i, B, (x) A, (x) { }
1 o | dx 1 °

Mote the absence of the factor % in (9.2). The gyricity
distribution chosen is

b7

where A1 is the total angular momentum stored in the rod.

The system matrices 9, G, and X are assembled using the
finite element method, which is a special case of the Rayleigh-
Ritz procedure outlined in the last section, Special attention,
though, should be given to the construction of G, defined in
general by (8.7). The most useful form for numerical com-
putation can be obtained by integrating (8.7) by parts (Gauss’
Theorem) which, upon noting the forced boundary conditions
at the root, and A, (/) =0, yields

¥3)

!
g= —So (VA)Th, (VA)dx 9.4)
The basis functions used are the traditional cubic Hermite
polynomials, one set each for ¥, and u,, so that there are four
degrees of freedom for each node.

The equation of motion for the gyroelastic rod is

8¢+8E=v 9.5)

which is the matrix equivalent of (5.1). The corresponding
eigenvalue problem can be written as

(0 21+ 82)§=0 9.6)

since there exists U such that UT8U=1 and UT$U = §. Here
U is given by
T [}
U= 9.7)
® TQ !
where T is the eigenmatrix of the corresponding nongyric
elastic system that diagonalizes W and X:

TIMT=1, TTKT=0? 9.8)

The form (9.6) is convenient since it can be solved by a
standard eigenvalue routine for symmetric matrices. It is
noteworthy that if we partition ¢, as {, =[—w.,qL,, q1,]7 the
approximate gyroelastic mode shapes are {u,, v, } = A (x)
T ' { Qe Qoo -

The variation of the rod’s vibrational frequencies with
respect to (1200 values of) Ay is determined from (9.6) using a
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10-element approximation (Fig. 5). The following non-
dimensionalizations prove useful:

wczx EE ’ h T é "‘LT‘T
B (pBI?)"
where BA (B,B,)"; the rod is taken to have a bending stiff-
ness ratio [S’éBl/B2 =1.5. The most salient characteristic of
the plot in Fig. 5 is the trend of some frequencies to tend to
zero and some to infinity. This is a generalization of the result
obtained for the system ® + W of Fig. 1.

Figure 5 naturally raises the following conundrum: Do the
frequency curves actually cross? Within the resolution of the
computer-generated plot, it appears, especially at higher
values of hy, that the curves do cross. However, closer study
shows that these ‘‘crossings,’’ although very nearly occurring
(especially for the low modes and high A7), do not in fact
occur. Consider, for example, the &f% curve. At hy=0, it
begins at a value of about 26. As h is increased, the curve
oscillates repeatedly, coming ever nearer at the extremities to
neighboring curves. Eventually it veers so close to its
neighbors that, on the scale shown, crossings seem to occur. A
change in the personality of the curve from ‘‘near misses’’ to
actual crossings would, of course, be counterintuitive, and
closer numerical examination of the critical regions has shown
that there is no actual crossing. In summary, despite ap-
pearances, there are no curves crossing in Fig. 5.

@A

9.9}

Figure 6 shows some typical gyroelastic mode shapes for the
rod. It should be noted that in general neither d, nor v, is
planar (as is the case for simple elastic modes). Numerical
experimentation suggests that the mode shapes change most
radically in the region where two frequencies virtually
coalesce. Let us examine Figs. 6(a —c) more closely. Here it is
the second and third frequencies that approach one another
and the corresponding mode shapes seem to exchange in-
dentities. In describing this phenomenon one is tempted to say
that the second mode ‘“‘acquires a node’’ and the third mode
“‘sheds a node.”’ It thus appears that the ‘“‘identity’’ of a mode
shape belongs to a general frequency trend and not an actual
zig-zagging frequency line.

Finally, we note that the frequencies are paired, with one
tending generally to zero and the other to infinity.
Reminescent of the ® + "W system, the low-frequency mode
is an elliptical precession of the rod with a sense opposite to A
and the high-frequency mode is an elliptical precession with
the same sense as ki ;.

©,=903 =

U,,V,

W, =925 =
u,,v,

@, = 1.26
10 Concluding Remarks

The preceding numerical examples provide a simple
illustration of continuously distributed gyricity, and of
gyroelastic modes, but their simplicity should not obscure the
fact that these ideas are equally applicable to complex
structures. Indeed, it can be anticipated that in structures
where gyricity is important (IGull comparable to Xul), a
structural model based on N gyroelastic modal coordinate
pairs {7,,, M, @=1...,N} will be more accurate than a
model based on N conventional modal coordinates with
gyricity regarded as an ‘‘external’’ disturbance.

In any event it is evident that a structure’s dynamical
characteristics can be substantially modified by the in-
troduction of an appropriate distribution of gyricity. Fur-
thermore, by extension of a time-varying distribution, hg(r,
t), gyricity provides a potentially powerful technique for
X  controlling the dynamics of an elastic structure. The ap-
plication that motivates the present authors is the control of
structures in space. Very large, possibly flimsy space struc-
tures may one day stretch for kilometers, and one can
(c) ﬁT =270 ) ; visualize that their shape and orientation could be controlled

x by myriad small CMG’s or reaction wheels distributed over
Fig. 6 the structure. An effective technique for dynamics and

o il

T
e
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control analysis would be to represent this cloud of wheels as  Script

a continuous distribution of gyricity. & = elastic body
& = 6Xx6 operator; see (5.2)
References G = 3x 3 gyricity operator; see (4.4)
| D’Eleuterio, G. M. T., and Hughes, P. C., “Dynamics of a Flexible G = gyricity matrix; see (8.7)
Vehicle With a General Angular Momentum Distribution,” Progress Report X = 3 x 3stiffness operator
presented at the III VPI and SU/AIAA Symposium on the Dynamics and H = stiffness matrix: see (8.9)
Control of Large Flexible Spacecraft, Blacksburg, Va., June 1981. ~ ’
2 Likins, P. W., “Dynamics and Control of Flexible Space Vehicles,’’ JPL M = 3x3 mass operator; see 4.7
Tech. Report 32-1329 (Rev. 1), Jan. 1970. . § = 6Xx6operator: see (5.2
3 Hablani, H. B., “Modal Analysis of Gyroscopic Flexible Spacecraft: A ~ P ’ ( )
Continuum Approach,’” J. Guidance, Confrol and Dynamics, Vol. 5, No. 5, Greek
Sept.-Oct. 1982, pp. 448-457.
4 Roberson, R. E., “The Equivalence of Two Classical Problems of Free « = (small) rotational elastic displacement; see
Spinning Gyrostats,”” ASME JOURNAL oF APPLIED MECHANICS, Vol, 38, 1971, (4 1)
pp. 707-708. _ :
5 Timoshenko, S., and Goodier, J. N., Theory of Elasticity, McGraw-Hill, Y = see (5.3) . .
New York, 1951. {Nue» M) = gyroelastic modal coordinates; see (7.1)
6 D’Eleuterio, G. M. T., “Dynamics and Control of Gyro-Elastic Space ¢ = mass density
«1 = real and imaginary parts of x,

Vehicles,”” Ph,D. Disseration, University of Toronto, Institute for Aerospace ) 1//
[val

Studies, 1983.

7 Huseyin, K., Vibrations and Stability of Multiple Parameter Systems, X. = complex, 6X 1 eigenfunction; see (6.1)

Sijthoff & Noordhoff, 1978. w, = natural frequency of gyroelastic mode «
Special Symbols
APPENDIX 4 = unit source function (a.k.a. Dirac function, or

unit impulse function)

Principal Symbols
Vv = [d/dr, 3/8r, 3/3r,]7; gradient t
f = force on volume element dV (9/6r, 8/8r, 3/3r;]"; gradient operator
g = torque on volume element dV 0 —a R
h, = gyricity in dV’; see Fig. 3 X = -
r = spatial independent variable 4 i 0 @y | forany3x1vectora
T = kinetic energy —a, a 0
u(r,t) = (small) elastic displacement H _ . T
u,, v, = pair of shape functions for gyroelastic mode o (®)" = complex conjugate of (*)
U = potential energy (®)” = transpose of (*)
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Articulated Tubes’

The nonlinear dynamics of a two-segment articulated tubes system conveying a
Sfluid is studied when the flow is harmonically perturbed. The mean value of the
flow rate is near its critical value when the downward vertical position gets unstable
and undergoes Hopf bifurcation into periodic solutions. The harmonic per-

turbations are assumed to be in parametric resonance with the linearized system.
The method of Alternate Problems is used to obtain the small nonlinear subhar-
monic solutions of the system. It is shown that, in addition to the usual jump
response, the system also exhibits stable and unstable isolated solution branches.
For some parameter combinations the stable solutions can become unstable and can
then bifurcate into aperiodic or amplitude-modulated motions.

1 Introduction

Flow-induced motions in articulated and continuous tubes
carrying a fluid have been studied extensively beginning with
the work of Benjamin [1, 2] on articulated tubes. Much of the
early work has been limited to the linearized stability analysis
of initially straight tubes for motions in a plane. Among the
references, works of Gregory and Paidoussis [3, 4] and
Paidoussis and Issid [S] may be mentioned. Nonlinear
analysis for linearly unstable planar motions has been con-
ducted by Holmes [6], Rousselet and Herrmann [7], and
Bajaj, Sethna, and Lundgren [8]. Bajaj and Sethna [9, 10]
have recently studied the problem for three-dimensional
motions.

Almost all the works mentioned in the foregoing have been
concerned with the case when the flow through the tubes is at
a constant rate. Bohn and Hermann [1] discussed the ar-
ticulated tubes system when the flow rate is periodic. They
showed that both parametric and combination resonances can
occur, especially when the mean flow is near its critical value.
The case of continuous tubes with periodic flow was studied
by Paidoussis and Issid [5], Ginsberg [12], and Paidoussis and
Sundararajan {13].

In this paper we study nonlinear planar motions of ar-
ticulated tubes with periodic flow. The mean flow rate is near

I This work was supported by funds from the National Science Foundation
under grant MEA-8117086.

Contributed by the Applied Mechanics Division for presentation at the 1984
PVP Conference and Exhibition, Joint with Applied Mechanics Division and
Materials Division, San Antonio, Texas, June 17-21, 1984 of THE AMERICAN
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ASME, United Engineering Center, 345 East 47th Street, New York, N.Y.
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paper itself in the JOURNAL OF APPLIED MECHANICS. Manuscript received by
ASME Applied Mechanics Division, March, 1983; final revision, ‘October,
1983. Paper No. 84-APM-30.

Copies will be available until February, 1985.
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the critical value for which the straight equilibrium position of
the tubes becomes unstable with a complex pair of eigenvalues
crossing the imaginary axis and the system undergoes Hopf
bifurcation. The periodic fluctuations in the flow rate are in
parametric resonance with the linear system around
criticality. The nonlinear analysis is restricted to only periodic
motions. Even under these restrictions, the system, depending
on other parameters, exhibits a wide variety of phenomena
including jump response and isolated solutions.

The mathematical problem is a problem in perturbed
bifurcation theory, specifically, that of periodically perturbed
Hopf bifurcations. Recently, Rosenblat and Cohen [14], Kath
[15], and Smith [16] have presented results related to various
aspects of the problem of forced excitations of systems un-
dergoing Hopf bifurcation. The case of parametric per-
turbations has been studied by the author in [17] where the
method of Alternate Problems [18] has been used to find the
subharmonic solutions. The present work is based on his
general analysis.

2 Equations of Motion

In the following, we give the equations of motion for a two-
segment articulated tubes system hanging vertically and
undergoing planar motions. The fluid enters the tubes at the
top and is discharged tangentially at the lower end of the tubes
to the atmosphere. A cartesian coordinate system is fixed at
the top of the tubes where the fluid enters with the Z-axis
coinciding with the downward vertical position. The
displacements of the tubes from the Z-axis are then given by
X-coordinates.

We assume that the fluid is incompressible and its velocity
profile at any cross section is uniform. Both the tubes have the
same circular cross section and the diameters of the tubes are
small compared to their lengths. The elastic restoring

JUNE 1984, Vol. 511423
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moments at the joints are linearly proportional to the angles
between the centerlines of adjacent tubes.

Following Benjamin {1] and Bajaj and Sethna [9], it can be
shown that the equations -of motion of the system in
dimensionless form are given by:

a%(a+3)x, +3ax,/2+a?Bpx,
+2aBpx; +aBp*(x; - x)
+a(a+2)le + KX +(x1 "‘Xz)
+aBp(x, —x))= —x [a*(@+3)( +x, %)
+ 30(X’% +XZ)Z'2)/2] “Zaﬁpxl)CZ.)éz
+x3 [~ (a(@a+2)G+ 1 —afp*}/2—2xk/3]
+x,x3(1 —aBp?)/2~(x; —x3)3/6
—a*Boxix; +aBpx, (xF —x3)/2, ey
and ‘
3(1)21/24'.*:2 +BpX2 +GXZ +(x2 —x1)= "Xz[(x% +x2)'€'2)
+3a03 +x,%,)/2] — Gx3/2 + [, (x? —x3)
+(x, —x,)%/31/2 — Box} ;. )

Here x; and x| + X, are, respectively, the nondimensional
displacements of the ends of the upper and lower tube
segments. Also, since we are interested in studying small
nonlinear motions, we have only retained the linear and the
lowest-order nonlinear terms, which are cubic. We should
also point out that these equations have some additional terms
compared to the equations in [9] and these arise because the
flow velocity is not constant.

The equations of motion depend on five dimensionless
parameters: a, «, 3, p, and G. The parameter a is the ratio of
length of the upper segment to that of the lower segment.
Parameter « represents the ratio of stiffness of the upper joint
to that of the lower joint. The ratio of mass of the fluid to that
of the tube is given by 8. The dimensionless flow velocity is
represented by p and the gravity parameter G represents the
magnitude of weight forces nondimensionalized with respect
to the stiffness of the lower joint.

As indicated in the Introduction, we wish to study the
problem of parametric excitations arising from the flow

fluctuations and, therefore, we assume that the flow velocity p
is of the form

p=py+ ocos 2wt 3)

where p, is the mean flow component and o, the fluctuation
amplitude, is small, thatis, ¢ < < pg.

We now transform equations (1) and (2) into a first order
vector form. Let

= (xl »X2 ’x.l :x2)T-
Equations (1) and (2) can then be written as
z=Ay(pg)z+ o{ A, cos 2wt + B sin 2wt}z

+ 2 { A, cos? 2wt} z+h,(z,00) + hy(2,00,0,0) )
where
Ao(po)
0 0 a(4a+3) 0
1 0 0 0 a(4a+3)
S a@at3) | _4g  _Ba -4fpea —2800 |
—Ca —Da 6a*Bpg 4a?Bpq

424/ Vol.51,JUNE 1984
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A‘l
0 0 0 0
1 0 0 0 0
" ada+3) 860, ~88py —4aB  -28 |
—12aBp, 128poa 6a’3 —4a*8
0 0 00
B ﬂ_ 0 0 00
a(4a +3) -2 2 o0l
3¢ —-3a 0 0

A=4(1+x)/a’® +(6—4Bpd)/a+4G(a+2)/a,

B=(4Bp} —6)/a—4/a*> —6G/a,

C=60p3 —4(a+4)—6(1+x)/a—6G(a+2),
and

D=6/a+(da+12—6Pp3) +4G(a +3).

The matrix A, and the nonlinear function h, will not be
needed explicitly in the subsequent analysis. For the function
h,, we note that the first two components 4, and %, are zero.
The nonzero components /1,3 and 4,4 are given in [9] and will,
therefore, not be repeated here for lack of space.

3 TLinearized System, Conditions at Criticality
The linearized system is given by
z=A,(po)z+ oA, cos 2wt + B sin 20tz
+0* (A, cos? 2ut}z. 5)

For ¢ = 0, this is just the problem of articulated tubes with
steady flow py and it is well known [1, 9] that the zero solution
z = 0 loses its stability at some flow rate py_ = p., with a pair
of complex-conjugate eigenvalues of A, crossing the
imaginary axis at nonzero speed. This is valid for all values of
system parameters a, x, and 8 so long as G, the gravity
parameter, is small [21]. The critical flow rate, p., clearly
depends on these parameters. The pure-imaginary pair of
eigenvalues, =iy, can be shown [9] to be given by

vi =@+ 1)? +&+2(a+ 1)aG—afptl/a’*(a+1). (6)

The behavior of the linear system (5) for small (pg — o) and
g, 0 # 0, is determined by the excitation frequency w. As is
well known [19], the system exhibits parametric resonance for
values of w closeto vo/n,n = 1,2,3,...Thecaseof n = 1
corresponds to ‘‘primary’’ parametric resonance and we
restrict our analysis to this case.

Therefore, we analyze the nonlinear system (4) when (p, —
per) and o are small and w is close to the critical frequency »,.
Before proceeding with the nonlinear analysis, it is ad-
vantageous to transform equations (4) into a canonical form
in which the linear system is in its Jordan form.

4 System in Jordan Canonical Variables

Let C be the matrix of eigenvectors ofAAO. Also let D be the
eigenvector matrix corresponding to AJ. Then, as is well
known [9], by the transformation z = Cy, the nonlinear
system (4) is reduced to

¥ =A(po)y + o(E; cos 2ut
+E, sin 2wy + k(y,00,0,0f) )
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where
A(p))=DTA,C, E,=DTA,C, E,=DTBC
and .
k(y,00,0,00) =D {(o?A, cos? 2w1)Cy + h, (Cy,po)
+h2(CY9PO;U!t)]

Here, the matrix A is in real Jordan form,

Consider equations (7). At py = p, A has a pair of pure
imaginary eigenvalues =iyy. The parametric excitation
frequency w is close to vy. To study the nonlinear behavior of
the system for small deviations from p.,, we let

Po =Pt Vp=w+a

where 5 and o are small. The parameter o represents
“‘detuning.’’ Equations (7) can then be written as

y=Aoy+ oAy +7A,(n)y

+ o(E, cos 2wt + E, sin 200y + k(Y,5,0,01) (8)
where ‘
0=Alo) —aA;, 7A;(m)=Alo +1)—Aq,

i

and
k(y,n,0,0f) =k(¥,pc; +1,0,00).
The matrix A, has the structure

= . 0 w
A, =diag(Dg,Dy), D= ,
—w 0

and Dy is the 2 X2 matrix with both eigenvalues in the left
half of the complex plane. Matrix A, is given by

A, =diag(A,,0)

) 0 1
A2= .
~1 0

The matrix A,(y) is also in block diagonal form with two
blocks of 2 X 2 matrices each. In the limit as  — 0, the upper
nonzero block determines the rate of change with respect to pg
of critical eigenvalues and is given by

[—E }
110
& ¢t

d
and &= — (Im)\y)
dpg

where

€

where

PO = Per P0 =Per

d
E—a (Re \p)

Here \; and \,, \; = A, are the critical eigenvalues of A (o).
We now study equation (8) for its small 2#/w periodic
solutions.

5 Determination of Periodic Solutions

Consider the system (8). At 4 = a = ¢ = 0, the linearized
system

y=Apy ©

has a pair of pure imaginary eigenvalues +iw, w > 0. Thus,
the linearized system at criticality has a pair of periodic
solutions of period 27/w. We are interested in finding
periodic solutions of (8) when 7, o, and ¢ are nonzero, but
small. We first make a time scale change 7 = wf so that (8) is
transformed to
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wy’ =Aoy +F(y,7,7,0,0) (10)

where
F(y,T,?’],O’,a) = ou—\zy + ’I]Kl y
+ o(E; cos 27+ E; sin 27)y + k(y,n,0,7)

and where prime denotes differentiation with respect to 7.

The 2#7-periodic solutions of (10) can be found using either
the method of Liapunov-Schmidt [20] or the method of
Alternate Problems [18, 20]. Here we follow the latter along
the lines of Bajaj and Sethna {10]. Since the method is well
known, we only give the final results and leave the details [10,
17].

We work in the space of 2x-periodic continuous n-vector
functions. The (nXx2)-matrix functions ®(7) and ¥(7)
defined by

1=
®(r) =exp( = Kor) (e1,02),

1=
¥(n) =exp(- — A7) erre0) an

are, respectively, a basis for the 2w-periodic solutions of the
linear system

(12
and its adjoint

wy’ = —Aly. (13)
Here e;, i = 1, 2 denote n-vectors with 1 in the ith entry and
zero elsewhere. The problem of finding 2 r-periodic solutions

of equation (10) is then reduced to finding solutions deIR? of
the bifurcation equations

G(d9n:0’a)=0’ (14)
where d is related, in the first approximation, toy by y =
®(7)d.

Letting
A=A +7A, +0(Iy!?),
and

k(y,m,0,00) =k (y) +0(ly1°) +0(Inl Iy 1)
+0(lalZ lyl) +0(I(a,m) ! ly 1)

where k.(y) is a homogeneous cubic in y, the bifurcation
equations (14) reduce to

M, d + oM d + oM, d + Cr(d) + 0( fol?1dl)

+0( 1912 1d1)+0(i(g,0,a)1 1dI3)+0(1d13)=0, (15)
with functions M,, M,,, M, and C,(d) defined by
27 . 27 -
M,= So YA B(s)ds, M,= SO YT (s)A, ®(s)ds,
27
M,= go YT($){E, cos 2s + E, sin 25} ®(s)ds, (16)

and
27
Ce(d) = SO ¥T(s)k.(B(s)d)ds.

Equations (15) are a system of two nonlinear algebraic
equations dependent on three small parameters 3, o, and o
which can be varied independently. A general analysis of these
equations, to determine all the possible small solutions d for
1, o, and ¢ varying over the whole neighborhood of the origin
in the parameter space, is quite involved. Such equations have
been analyzed in detail in Chow and Hale [20].
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We assume that C,(d) = 0 implies d = 9. It can then be
shown [20] that every small solution of (15) satisfies

Idl <8(Inl % + Lol + lal %) amn
for some & # 0 and this suggests the scaling

d=pd, n=np?, a=ayu* and o= o °. (18)
Equations (15) are then reduced to :
12M, 4+ 0,M,d + 5, M, d + C, (d) +0( 1p12) =0. (19)

The reduced bifurcation equations are obtained by taking the
limit 4 — 0 which gives

ﬂzoMnao + aZOMaaO + UzoMaao +Cy(d) =0. (20)

Solutions to these equations determine the first ap-
proximations to the 27/ w-periodic solutions of (8).

The bifurcation equations, taking the explicit expressions
for various terms and the scaling (18) into account, can be
shown to reduce to

(a} +bHA* +2{a, tn— b (a+ an))A>

+ (82 + (a+ an)? — (¢t +d%) =0. 2D
Here, we have replaced d by the polar variables 4 and ¢
defined by di=Acos¢, d,=Asing,

eliminated ¢ and divided the resulting equation by A to
remove the zero solution A = 0.

Equation (21) determines the nonzero amplitudes of
periodic solutions of the system. These roots depend on
constantsa,, b, ¢\, and d,. The constants ¢, and d, are
determined by the matrices E, and E, which represent the
parametric excitation. The constants a; and b, are determined
by the function k.(y), which in turn depends on the physical
parameters a, B8, «, G, and the critical mean flow rate
corresponding to them, p.. For a given value of these
physical parameters, 1, o, and ¢ can be varied arbitrarily.

Before studying (21) in detail, it is convenient to also obtain
the conditions required for the stability of periodic solutions
determined by its real positive roots.

The stability of these bifurcating periodic solutions is
determined by the Floquet exponents of the variational

equation W’ = 30\1, + W K(r, Wy 22)
where
K(r,))=cA; + A, +0,(E, cos 27+E, sin 27)

+ky(i»/"'2n2):
dk
k )= —Y,.m),
y () 3y ()]

and where y = puy(r,p) is the 2r-periodic solution of (10)
whose stability is being studied. Equation (22) is a linear 2#-
periodic differential system which depends smoothly on u for
small enough u uniformly in 7. It can easily be shown that the
two noncritical Floquet exponents of (22) are given by
Vi =N +0(), j=3,4

where A; are the noncritical eigenvalues of matrix Ay. Thus,
the stability of the periodic solutions is determined by ~;(n), j
= 1, 2 for small u.

The critical exponents «;(u) and vy,(u) can be determined
using the method of Alternate Problems [18, 20]. Letting y =
2y, and A = wy,, we can easily show that, for the nonzero
solutions, these exponents are roots of

N2 —2M(En+2a,A%) +4[a*(c} +d?)
= [(E)* +(a+an)?) + A2 (b (a+dn) —a £7}1=0.  (23)
Here, A is the amplitude of the periodic solution whose

stability is to be determined. Exponents for the zero solution

are given by
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A2 =2&pR+ [(En)? + (a+ am)? — o2 (e} +dD)] =0. 24

The three equations (21), (23), and (24) need to be analyzed
together as a function of the independent parameters 4, o, and
o. Positive roots of (21) determine the nonzero periodic
solutions. The corresponding roots of (23) determine their
stability.

We first show that if there are no fluctuations in the flow
rate, that is, if 0 = 0, we recover the standard results of Hopf
bifurcation [20]. Let ¢ = 0. Then (21) has a real solution if

and only if o = — (& + b;£/a;)n and the resulting solution is
given by
A= —¢Eqy/a;. 25)
The corresponding roots of (23) are
A =0, X =-2&.

Thus, if @; < 0, the bifurcating limit cycle exists for 4 > 0
(supercritical) and it is stable, In case @, > 0, the solution
exists for < O (subcritical) and is unstable. Note that the
detuning « is not arbitrary and is determined as a part of the
solution. This is clearly because the system is autonomous and
the period of limit cycle depends on the amplitude of the
nonlinear response and, therefore, on the parameter 7.

When ¢ # 0 and both the parameters 4 and « are small but
arbitrary, the classification of the system response and that of
the parameter space becomes quite involved although the
methods of analysis are elementary. Such an analysis has been
performed by the author and the general results will be
presented elsewhere [17]. In the present work we only sketch
the general results and then give details for a few specific
values of parameters to show the kinds of periodic response
possible in the case of the articulated tubes system. .

Consider the amplitude equation (21). It can be easily seen
that in the region defined by

(n8)? +(a+ an)* = d*(ct +d7) (26)

there is only one real solution. There are two real nonzero
solutions for parameter values that satisfy b;(a + @) —a &y
> 0, lie inside the region

[6,(n8) +a,(a+am)]* < o (c +di)a +b), 27
and outside the region defined by (26).

As is clear from (24), the zero solution is stable when < 0
and the other parameters remain outside the region (26).
Inside (26) it is of saddle type. Of the two nonzero solutions,
the one with smaller amplitude is always unstable and a
saddle. The other solution, which is either the only nonzero
solution or is the one with larger amplitude, can become
unstable only when (23) has complex roots and they cross the
imaginary axis as the system parameters are varied. This
occurs when the parameters satisfy

dat(a+ am)? +4a, b, En(a+ an)

+ (a2 + bh)E*n? =dat(c} +d¥) e (28)

We can observe from the foregoing discussion that con-
stants @, and b, play important roles in the system response.
As the analysis of the ¢ = 0 case indicates, @, can be viewed as
a constant representing nonlinear damping or van der Pol
nonlinearity in a general van der Pol oscillator [19]. It
determines whether, in the absence of flow fluctuations, the
bifurcating periodic solution is stable (¢, < 0) or unstable (a,
> 0). The constant b, represents nonlinear stiffness similar to
the one in Duffing’s oscillator [19].

The preceding discussion about possible solutions and their
stability indicates that, for given system constants a,, b,, ¢,
and d|, it is possible to have regions in the parameter space
where the zero solution as well as all the existing nonzero
periodic solutions are unstable. On physical grounds we
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expect the solutions of the system to remain bounded. Such
solutions, if they exist, cannot be predicted by the present
analysis and some other method such as the method of
averaging must be used to uncover them. A study along these
lines is presently being conducted and preliminary results
indicate that the system, under these conditions, executes
amplitude-modulated motions. Similar phenomena have been
observed by Tezak, Nayfeh, and Mook [22].

We should also point out the possibility that for some
parameter values the origin as well as the larger of the two
nonzero periodic solutions are stable. In such a case the
ultimate motion observed in an experiment will be determined
by the initial conditions. The initial conditions, which lead to
a particular stable solution, can be determined if the method
of averaging is used for the analysis.

We now present results for the articulated tubes system for
specific values of the physical parameters a, (3, «, and G.

6 Numerical Results and Discussion

As noted earlier, the response amplitudes and their stability
depends on the constants @, and b, and the parameters %, o,
and o. The constants @; and b, are, in turn, functions of the
physical parameters a, x, 8, and G. To study the whole
parameter space is a very difficult proposition, and we
therefore restrict ourselves to a very small number of cases.
The cases chosen, however, do show the wide variety of
periodic solutions exhibited by the articulated tubes system.

For all the results presented here, the parameters a, «, and
G have been fixed at values 1.0, 1.0, and 0.25, respectively.
The two tube segments are thus of equal length, bending
stiffnesses of the two joints are identical, and bending
restoring forces are much larger than gravity.

Figure 1 shows the results for 3 = 2.0 in the a~0 parameter
plane, for two different values of #, in the form of a stability
diagram. Numerical calculations show that for this value of £,
a; < 0.0 and b; > 0.0. Thus, the Hopf bifurcating periodic
solution is stable and supercritical. The three curves C,, C,,
and C; correspond to the three boundaries given by equalities
(26), (27), and (28), respectively. For 5 = —0.25, the origin is
stable below the curve C;, that is, in the regions 7 and /I/. In
the region above C; the origin is unstable and the only
nonzero periodic solution is stable. There are two nonzero
periodic solutions in region /I between the curves C; and C,.
As already mentioned, the origin is also stable in this region.
Thus, there are two stable solutions in region III and only
initial conditions and the domains of attraction of these
solutions can determine the behavior that will be observed in
an experiment for these values of the parameters.

The results for n = 0.25, that is, for flow rate beyond its
critical value, are much more interesting. The trivial solution
is unstable for all values of the detuning o and the parametric
excitation magnitude o. In region 7, there is one periodic
solution which is stable. In region 17, there are two periodic
solutions and the upper one is stable. As we move across the
curve C; the unique nonzero periodic solution in region II7
and the upper solution in region /V become unstable with
complex conjugate Floquet exponents crossing the imaginary
axis and then remain unstable everywhere in the regions I
and IV. Thus, only in regions I and II are there periodic
solutions and one of them is stable. Everywhere else, either
there are no periodic solutions or, if they exist, they are
unstable. We discussed this possibility in the preceding section
where we indicated that the system might then perform
amplitude-modulated motions.

We now present the amplitudes of periodic solutions and
their stability as a function of the flow rate 5 and the detuning
parameter « for two different values of 8. The values of 8 and
the corresponding p.,, a,, and b, for the two cases are:

Journal of Applied Mechanics

(@) B=2.0 , p, =1.69378, a, = —0.06851, b, =0.05581,
(b) B=0.05, p,, =7.48640,a, = 0.06959, b, =1.02717.

In the first case, whose stability diagram has already been
discussed, a, < 0, while for the second a; > 0. As we will see
shortly, the response curves in the two cases have quite dif-
ferent features. In all of these results we have set o, the am-
plitude of flow fluctuation, to a physically reasonable fraction
(5 percent) of the corresponding p, .

The response curves for case (a) are shown in Figs. 2 and 3.
Figure 2(/) shows the response for ¢ = 0, the Hopf bifurcating
solution. This response is supercritical and stable because a,
< 0. The zero solution is stable for 4 < 0 and unstable for 5
> 0. At 7 = 0 it loses stability due to a pair of complex
Floquet exponents crossing the imaginary axis. The resulting
unstable solution is denoted by long-short dash lines. The loss
of stability due to a real Floquet exponent going through the
origin is indicated by short-short dash lines. Solid lines
represent stable solutions. This notation is followed for all the
results presented.

Plots (i))-(vi) in Fig. 2 show the response for various values
of detuning. These values of o were selected on the basis of a
stability diagram in the - plane. For large negative o, o =
—0.31, there is only one nonzero solution and it is stable.
Beyond 5 = 0.0 the origin is unstable and there is no nonzero
periodic solution. As « is increased, although the nontrivial
response remains single-valued, some portion for 4 > 0
becomes unstable. Further increase in « gives rise to a
multiple-valued region (o« = —0.1) and for larger values of «,
the unstable portion of the upper branch stabilizes (o« = 0.15).
The nonzero periodic solutions ‘‘pinch-off’’ the trivial
solution for large enough detuning « and, as shown for o =
0.4, the resulting solutions are isolated. For negative # the
origin is stable and it is unstable for n > 0. As the flow rate in
the system is increased and we cross the critical value = 0.0,
the vertical equilibrium position becomes unstable and there is
no 2r-periodic solution of the system. For flow rates slightly
greater than the critical value, there is a stable 2#-periodic
solution of large amplitude, but the manner in which transient
solutions of the system approach this stable solution cannot
be predicted by the present analysis.

Response curves for this same case are presented in Fig. 3,
now as a function of the detuning «. For large negative 7,
there is a single nonzero stable solution in the range of « for
which the origin is unstable. Plot (i/) shows the response for
flow slightly below the critical value. This exhibits the usual
jump phenomenon and hysteresis. For flows above the critical
value (plots (ifi)-(v)), the origin is unstable and it is possible to
have an unstable upper branch as well as isolated solutions.

Figure 4 shows the response curves for 8 = 0.05. The limit
cycle being perturbed by the parametric excitation is unstable
in the present case. Plot (i) shows that for large negative
detuning, the unstable limit cycle is suppressed. The origin,
however, now becomes unstable for flow rates below the
critical value and there may exist one or two nontrivial
solutions depending on the detuning and the flow rate. For
some small negative detuning, solutions in the upper branch
become unstable. An interesting situation is shown for a =
0.0. As the flow rate is slowly increased, the trivial solution
becomes unstable at n = —0.6.and the system jumps to a
stable periodic solution. On further increase in flow rate, this
solution itself becomes unstable and there is no other stable
27-periodic solution. We then expect the system response to
be amplitude-modulated, but this cannot be predicted by the
present analysis. Its indication is, however, given by the fact
that the loss in stability is due to a complex pair of Floguet
exponents crossing the imaginary axis. For large enough
detuning, the nonzero solutions ‘‘pinch-off’ and both
branches ultimately become unstable.
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Finally, we make a few interesting observations. In the
present case, for y > 0, there is no stable nonzero 2 r-periodic
solution irrespective of the value of detuning. Note fur-
thermore that, although, in both the cases for which results
have been presented here, b, > 0, their response curves are
bent in opposite directions.
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Functions and Its Applications to
the Stability of Permanent
Rotations of a Rigid Body

A new theorem for determining the definiteness of sign of functions is presented. As
the examples illustrate, it is applied to the stability of permanent rotations of a rigid

body about a fixed point in five cases.

1 TIatroduction

When Lyapunov’s direct method is used, it is necessary to
determine the definiteness of a function. When the function
can be written as

s Xp) = » Xp)+

3 xn)

where V,, is a definite form of mth degree and V* is the sum
of terms of degree higher than m, we know that U is also a
definite function by a well-known theorem. (1) On condition
that V,, is a semidefinite form, we have given three theorems
for determining the definiteness and changeability of sign of
U. (2) An improved theorem which enlarges the range of U is
given in the present paper. The interesting applications to the
stability of permanent rotations of a rigid body in five cases
are presented. The applications of these theorems (2) suggest a
conjecture: They are effective for determining stability of
motion in many cases under “‘equality’’ conditions which are
usually neglected. .

U(xhx2) oo Vm (Xl,xz, L)

V*(x, x5, . . .

2 A New Theorem for Determining the Definiteness of
Sign of Functions

., X,) be an even semidefinite
,X,,), V,,,+2(X1, X2,

Theorem: Let V,, (x,, x5, . .
form of mth degree. V. (x;, x2, . . .
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s Xpy)s e v oy Vippr (X1, X2, .. ., x,) are forms of m+1,
m+2,...,m+rth degree, respectively. When V,, is equal to
zero, V1= Vipga= ... = Vyir_1=0, V, ., has the same
sign as the constant sign of ¥, and turns to zero only at the
origin, then the function

U(xlaxly L axn)=Vm(xlax21- .. ’xn)+

i
Y Vet XX o X))+ Y 2.1)
=1
is a definite function with the same sign as that of V,,, where
V* is the sum of terms of degree higher than m+r. Both m
and r are even.

Proof: For the sake of avoiding ambiguity, let V,, be

positive semidefinite and it equals zero when x;, X3, . . . , X,
satisfy the following equations:
Jilxy, %y, o 00, x,)=00=1,2,...,k<n) 2.2)
Then V,, is a homogeneous form, so we have
Vin (NG, N33y o ooy NX)
=NV (X, X5, .+« ,x0)=0 2.3)

where A is an arbitrary constant. That means V,, always
remains zero on the straight line passing through the point
(x{, x3, ..., x;) and the origin of the coordinate system.
Thus, (2.2) represents conical surfaces in general — planes or
lines in particular —in the Euclidean space of n dimensions
(the so-called hyperconical surfaces) with the vertexes all at
the origin. On these surfaces,

Vi=Vps1= ... =V, 1=0,and V,,,, >0.
Let
X;=pog(s=1,2,...,n)
p=Nxt+xi+ ] 2.4
v+ ... +ai=1
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Then (2.1) becomes

Ux, X3, .o ., X)) =p" [V (g, 00y . o .y a,) +
oVimg(og, 0o o oo} + 00
o L Y (> 7O S |
+ 0" WVisr(ag, 00y - o0y )
VX e Xa)] 2.5
when p is sufficiently small, since V*(x;, x5, . . . , Xx,,) is the

infinitesimal of order higher than m +r, the sign of the sum in
the second brackets is determined by that of V,, ., (x, X3,

., x,) on condition that V,,,, (e, a3, .. .,0,) # O.
Similarly, the sign of U is determined by that of V,, when
Vo #0.

The intersection of the spherical surface S
+x;,=p?

BHxd= ... (2.6)

with the hyperconical surfaces (2.2) forms a closed region R
where V,, =V, .1 = ... = Vyir_1=0, V4, >0. Since the
sign of V,,,,.+V* is determined by that of V,,,,, now we
have
U=sVutViuer+ oo Vg + Viner

+V* =V, +V*>0 2.7
Furthermore, on the set S-R, by the given condition, V,, >0,
the sign of U is determined by that of V,,, i.e., U>0.
Therefore on the whole spherical surface S we have U>0.

As the radius of the spherical surface approaches zero, the
foregoing result remains valid. Thus on the whole sphere of
radius p, U>0, except that only at the origin of the sphere
U=0,i.e., Uis a positive-definite function.

When V,, is a negative semi-definite function, the proof is
similar.

Example:
Vi (X1,%2,X3) = V3 = (¥) +%2)* +%3
Vine1 (61,%2,%3) = V3 = (X +x3)° +x3
Vipar (X1 5X2:X3) = V= —x x5 +xt +x4, r=2
J10er,x3,x3) =% +x, =0

Sox,x3,63) =x3 =0

Putting x, = —x,, X3 =0in V3 and ¥, we have
Vy=0
V4 = 2x‘2‘

The conditions demanded by the theorem are all satisfied,
thus ‘

U(xl ,XZ,X3)"——’ V2 + V3 + V4 + V*

is positive-definite.

3 The Stability of Permanent Rotations of a Heavy
Rigid Body About a Fixed Point

Staude [3] showed that the motion under gravity of an
asymmetric rigid body, with one point 0 fixed, can be a
uniform rotation about each of a system of =! axes through
0, when such an axis is put in a vertical position. In such a case
the angular velocity vector remains constant in direction and
magnitude with respect to the space and the body. The axes of
rotation form a cone of the second order fixed with the body.

The stability of the Staude rotations has been investigated
by Hadamard [4], Grammel [5], Stoewa [6], Bottema [7], and
Rumiantsev [8]. '

The most complete results are due to Rumiantsev. In what

Journal of Applied Mechanics

follows we will introduce his method which is based on the
construction of a Lyapunov function and will improve his
results in four cases by means of the theorem in Section 2. In
the fifth case, the theorem is applied to get the necessary and
sufficient stability condition of the sleeping top.

A heavy rigid body moves about a fixed point 0. The
inertial coordinate system is Ox,y,z,, with Oz, axis vertical
upward. Ox, Oy, Oz are the principal axes of inertia of the
rigid body about 0. The corresponding moments of inertia are
A, B, C, x,, ¥, 2o are the coordinates of the center of mass of
the rigid body in the moving coordinate system. For sim-
plicity, we take the weight of the rigid body mg=1.

The permanent rotation of the rigid body about a vertical
axis with constant angular velocity w gives the following
condition from the equations of motion [9]:

Wk, XI))+ryxk; =0 3.1
k, is the upward vertical unit vector fixed in the inertial space,
I, =1, (Ao, BB, Cvy) where «, 3, v are the constant direction
cosines of k, in Oxyz and ry is the position vector of the
center of mass in Oxyz. It is noted that the direction of the
rotating axis is fixed not only in the inertial space but also in
the moving coordinate system Oxyz.
} 3.2)

The undisturbed motion is
where p, g, r are the projections of the angular velocity of the
rigid body on Ox, Oy, Oz, respectively, and v,, v,, v, are the
direction cosines of k; in Oxyz.
In general, the center of mass is not on the rotating axis. We
will study the stability of this motion.
} (3.3)

p=py=aw, g=qy=_Pw, r=rog=yw

Y1=0 v2=8 3=

The disturbed motion is

P=po+&i, g=qo+#%,, r=ro+4;

Y=ot Y2 =B+mn Y3=7v+mn;

where £, §&,, &3, 71, 72, 13 are disturbances.
We have the equations for the disturbances:

d
A(—;%—) +(C—B)(roé2 +qoks +£263)=20m2 —Yoms

d
B(%)-*-(A_C) (p0£3+r0£1+£3£1)=x0713_Zo'f]l I

d
C(§>+(B—A)(CIOE; +poks +HE E) =Yoo —Xom2 J

3.4
<
dny _
a =romy +vE; + £ — (Gons +vEx + Eam3)
dn, _ 3.5)
W—-Po’?a +yE +Eny —(rom +aks +E3) T .
dny _
g =qon +aty + Eyn —@on + BEI + E11m2)
W,

The first integrals become
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V,=A (£ +2p01) + B(§] +2q0E,) + C (&3 h It is obvious that (3.13) is a fortiori satisfied provided that
3 (3.14) holds. Therefore, if the largest of all the p-values
+2ro€3) +2(xom +Yomy +2om3) = const. specified in the foregoing is selected, then conditions (3.11)

_ ) will be satisfied simultaneously under (3.14).
Vy=A{pon, + ok +E 1) +B(qen, +BE; + E273) (3.6) 1. Now we discuss the stability under a weaker condition:

v

+C{rons + + = const. : x
(roms +v&3 + £37m3) ‘ <l52+ &az) 2o, Xo¥ =0 (3.15)
Ve=n% + 13+ 13 +2(an + By +vn93)=0 @ 8 b
) J with a>0, 8<0, y <0 unchanged.
The Lyapunov function constructed by Rumiantsev is (@) When
V=V,=20V,+ NV, + VapV? X9=0,y,=0 (3.16)
= A+ BE} + CE —20(AE ny + Béym +Chyhy) (3.11) becomes
+2u (B mz + aynyms + Bymzems) + (A + pa®)nt - 3
+ N+ 803 + O Yk + Vo f (n15m2ms) @7 ke >0
where
S(nism2,m3) = (af + 03 + wD)nt + 03 + 03 onf’}o ~”<£Q52+«1’Bqaz)=0 | 3.17)
04 o
X
+dComs + b+ yn)N=Aw =0 =Bt~ 2
* YoZo 5 + X0Z0 . + XoJo 5\ _ *oYoZo -0
Xy Yo Zo # B T A 8 af
)\=Aw2——=Bw2—~-E=Cw2—~— (3.8) Y Y o J
o Y
and pis an arbitrary constant. . The conditions of (3.17) are weaker than that of (3.11).
According to Sylvester’s criterion the necessary and suf- Equation (3.8) becomes
ficient conditions for ¥'— V4 uf'to be positive definite are
A—Aw? + pa? >0 M )\=Aw2=Bw2=Cw2—z—o (3.18)
Y
‘ (A—=Aw?) A~ Buw?) + plo?(A\~Bu?) + PN\~ Aw?)] >0 Putting (3.18) in (3.7), we have
V=Vy+V3+V, (3.19)

N —(A+B+C)w?*N + (BC+AC+AB) w*N\—ABCuw®
>(3.9) where

2 - 40282 + v2YN— B (a2 + v2 Y — Cot (o + B2
FUN = A+ yON=Bo(ef A= Collar+ BN V,=A( —wm)? +B(& —wn)? + plon; + B0

+(BCa? + ACR? + ABY)w*] >0 J z
+ym3)2 + CE} —2C +(C2—~9) 2 3.20
The corresponding scalar equations of (3.1) are ) . & wana ¢ Y s ( )
(B—C) Byw? =yoy—208 is positive semidefinite and becomes zero when
(C—A)yow? =zg0—Xgy 3.10) Er=wm #0, &= #0, £3=9;=0, an +8,=0 (3.21)
(A—B) aBa? = xoB—yoc Vs =n(nt +u +n5)am + Bz + ) (3.22)
In v £ (3.8) and (.10) }(; 0 dine th diti becomes zero under (3.21) and
n view of (3.8) an . the preceding three conditions
reduce to Vi=Yap(ni+n3+n3) (3.23)
- becomes
2_ %o 2
-—>0
el V4=%u[l+(g> ]n;‘ (3.24)
XoJo Xo o, Yo 5 . .
— —ul =B +=a*) >0 > (3.11) under (3.21). V, is always positive and becomes zero only at
afl a 8 the origin.
All the conditions of the theorem are satisfied, thus Vis a
( YoZo 5 + XoZg 8+ XoYo 2) _ XoYoZo >0 positive-definite function. Therefore the motion is stable.
[ By o oy of ofB ) (b) When
Let Xp=20=0 (3.25)
3.1D)b
a>0,8<0,y<0,x, >0,75 >0,20 >0 (.12 (11 becomes
It is obvious that the first condition of (3.11) can be satisfied Xo
by a proper choice of u>0. The second condition can be po — = >0
satisfied for a proper positive p such that @
Xo . . Yo Xodo _ (x—"32+y—°a2) >0 (3.26)
LB+ et <0 (3.13) B M\ 8 '
The third condition is also satisfied by a proper choice of a
positive u provided that u(yOZO ot + 2080 g2y XoYo ) XoYoZo
x v 20 Xoy . By oy afB off
(-932+—°a2>—°+-372>0 (3.14)
« g Y of (3.8) becomes
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A=A = Bo? — 2% = Cu? (3.27)
Putting (3.27) in (3.7), we have
where
Vy=A (& —wn)? +C(& —wm3)? +BES —2wBE, 1,
- (Bt =22 )+ utom +Bm b (29
is positive semidefinite and becomes zero when
£ =wm 20, £ =wn3 #0, £&5=1=0, oy +y93=0  (3.30)
Vs = p(nt +n3 +ni)am; + Bz +vn3) (3.31)
becomes zero under (3.30) and
Vi=You(nl +n3 +43)? (3.32)
becomes
o 2
V4=%;4[1+<—) ]n‘l‘ 3.33)
v

under (3.30). V, is always positive and becomes zero only at
the origin. All the conditions of the theorem are satisfied, thus
V is a positive-definite function. Therefore the motion is
stable.

(¢) When
Yo=20=0 (3.34)
(3.11) becomes
x Y
po® — 2>0
o
XoJo (x° g4 20 a2) >0 L (3.35)
afl
#<)’ozo o+ XoZo n XoZo 72) _ XYoZo -0
By ay af afl )
(3.8) becomes
A=Aw? — 20 = B? = Cu? (3.36)
87
Putting (3.36) in (3.7), we have
V= V2 + V3 + V4 (3.37)
where
X
V=gt ~2edtim + (402 = 20 ) gt 4 B(&, - om)?
+C (&3 — wm3)* + ulan + B +yn3)? (3.38)

is positive semidefinite when x, <0 and becomes zero when

§=m =0, LH=wn#0, E&3=wn;#0, By +yn3=0(3.39)
V3 =u(nt + 0} +n3)omy + Bz + vyms) (3.40)
becomes zero under (3.39) and
Vy=Yap(nl +nj +n3)? (3.41)
becomes
8\ 2
V4=%u[l+(—) ]né (3.42)
Y

under (3.39). V, is always positive and becomes zero only at
the origin. All the conditions of the theorem are satisfied, thus
V is a positive-definite function. Therefore the motion is
stable when x; <0.
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2. (@) Let us investigate the stability of rotation about the
principal inertia axis Ox which passes through the center of
mass of the body and which can be a permanent vertical axis
of rotation for an angular velocity w. Let x, >0, yy =2, =0.

The undisturbed motion is

pP=pPo=uw, 4=qy=0, r=ry=0 }
. (3.43)
Ti=a=1, ,=8=0, y;=v=0
Now (3.8) becomes
A=Aw? —x, (3.44)
(3.11) becomes
w—xo>0
(A—B)wz—x0>0} (3.45)
(A—C)w?—x3>0
Let A > B> C, we have the condition for stability:
(A—B)w*>x, (3.46)
Now we consider the stability under the weaker condition:
(A—B)w?=x,
Under this condition (3.7) becomes
V=V,+V,+V, (3.47)
where
Vy=A(E —wn)? +B(& —wm)? +C(E —wny)?
+(u~xo)nt + (A — O)o? —xol13 (3.48)

is positive semidefinite by the first and third conditions of
(3.45) and becomes zero when

§i=m=&=13=0, {H=wn #0

Vi=p(nt +n3 +99m (3.49)
becomes zero under (3.49) and
Vy=Yap(ni+ni+n3)° (3.50)
becomes
V= Yepns (3.51)

under (3.49). V, is always positive and becomes zero only at
the origin. All the conditions of the theorem are satisfied, thus
V is a positive-definite function, therefore the motion is stable
when (4 — B)w? =x,.

We have improved Rumiantsev’s results in the preceding
four cases by the theorem given in Section 2.

(b) When B=C, we have the case of a sleeping top. The
first integrals of the equations for the disturbances are

V,=A(E +2p0§1) + C (£} + £3) +2x0m, =const.

Vy=A@ony + &)+ C(Eym; + £3m3) = const. (3.52)

Ve=n}+9}+nj+29,=0

Va=%

The well-known Lyapunov function given by Chetaev (10)
is the quadratic:

V=V, +2\V,— (X +Ap) V.+uVi—2(Apg + ANV,
= CE? +2NCEam2 ~ (. ay0,) 13 + CEF + 2XChams = (%o

+ Ay )M+ (A FWEL + 20 £y — (o + Apn) i (3.53)
where p=A (A~ C)/Cand A can be chosen as

Apq
A= — 3.54
2 (3.54)
According to Sylvester’s criterion, when
A%p} >4Cx, (3.55)
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